The U.S. Air Force at Warner Robins Air Logistics Center experimented successfully — with implementing LCO₂

for aircraft systems maintenance.

Demonstration of Liquid CO₂ as an Alternative for Metal Parts Cleaning

BY CHARLES H. DARVIN AND ELIZABETH A. HILL

Introduction

The use of carbon dioxide (CO₂) in its supercritical state is an established technology for solvent extraction in processes such as decaffeinating coffee, wastewater treatment and chemical analysis.^{1:3} Several studies have been conducted with supercritical CO₂ for surface cleaning.^{4.5} However, the potential for liquid CO₂ (LCO₂) as a surface cleaning agent has remained largely unexplored. This may be due to supercritical CO₂'s greater solvency for some contaminants compared to LCO₂.⁶ The difference in cleaning capability can be offset in a liquid system with the addition of process enhancements such as ultrasonics or megasonics, techniques that have not been very effective with CO₂ in the supercritical state.

In early 1995, a program was initiated by the Environmental Protection Agency to investigate new and innovative surface cleaning and degreasing technologies as alternatives to ozone-depleting compounds including 1,1,1-trichloroethane (TCA), methylene chloride, and Freon 113TM [1,1,2-trichloro-1,2,2-trifluoroethane, chlorofluorocarbon (CFC)-113]. One promising candidate identified during the investigation was LCO₂. The United States Air Force at the Warner Robins Air Logistics Center (WR-ALC), Robins AFB, GA, was requested to participate in the demonstration and served as the demonstration site. The WR-ALC uses several surface cleaning processes at the facility during aircraft sys-

tems maintenance. These processes generate a broad range of air, water and solid waste environmental contaminants. The volume of these wastes could be reduced by the use of LCO_2 cleaning.

EW TECHNOLOGIES

 LCO_2 is of interest as a potential solvent degreasing substitute largely because of what it is not. First of all, it is not an ozone-depleting compound (ODC). Therefore, it does not present a threat to the earth's ozone layer as found with typical chlorofluorocarbon (CFC) solvents. It is nonflammable and has low toxicity. Thus, it does not present a safety hazard when used properly. Finally, LCO_2 is not expensive when compared to CFCs and equivalent substitutes. This is important to its viability as an industrial surface cleaning and degreasing solvent.

The objective of the project was to demonstrate the viability and efficiency of the LCO_2 cleaning as an alternative to current cleaning and degreasing technologies. The study was designed to show that LCO_2 cleaning, when properly integrated into the manufacturing process, could remove various organic and solid contaminants typically removed during vapor degreasing with ozone-depleting solvents.

Liquid CO₂

Carbon dioxide is a gas at standard temperature and pressure, $32^{\circ}F(0^{\circ}C)$ and 14.7 psi (1 bar). By increasing the pressure and temperature of the CO₂, it can be converted from

Table I.

(a) Calculated from Giddings equation, page 224 of Reference 7.

(b) From Reference 9.

(c) Value at 25°C, from supplier literature.

The Tomco₂ **Dry Ice Cleaning System** For a variety of surfaces in a variety of industries:

• Automotive • Pulp & Paper

• Petrochemical

• Tire & Rubber

• Electronics

- Food Processing
 - Utilities
 - Aerospace

• Printing

- · Railroad
- Marine
- Plastics
- Contract Cleaning

Over 25 Years In The Carbon Dioxide Industry

A blast cleaning system that replaces chemical cleaning in many applications.

Tomco₂ Equipment Company

3340 Rosebud Road • Loganville, Georgia 30249 Phone: (770) 979-8000 • (800) 832-4262 FAX: (770) 985-9179 • E-Mail: tomco@atl.mindspring.com

For Information Circle No. 70

the gaseous phase to the liquid and supercritical phases. As a liquid or supercritical fluid, CO2 has good solvent properties for oils, greases and other common machining contaminants. Changing the operating pressure and temperatures within the defined state boundaries will allow selective removal from a surface and separation of a variety of metal finishing and fabrication contaminants. Although solubility is not the sole property that defines the acceptability of a potential solvent substitute, LCO₂ compares favorably with other typical degreasing solvents. Two other physical properties shown in Table I (page 25) that affect cleaning are surface tension and viscosity. LCO2 has low surface tension and very low viscosity, which improves the likelihood that the solvent will wet the surface to be cleaned and penetrate into small crevices and blind holes in the parts.

Liquid CO₂ Cleaning and **Degreasing Process**

The LCO₂ cleaning process is primarily a degreasing process consistent with vapor degreasing. Similar to vapor degreasing, it has only limited capability to remove particulate matter from a surface without additional mechanical enhancements such as ultrasonics or sprays. The process will remove most light and medium weight hydrocarbon oils, gross particulate contamination, drawing compounds and other machining fluids. A typical LCO₂ degreasing cycle takes approximately 20 to 25 minutes, including loading and unloading parts. The best applications are those where organic vapor degreasing solvents will work. Similar to CFCs and aqueous solvent systems, LCO2 will not remove rust, paint, coatings or most adhesives. These are typically removed by other surface preparation techniques such as abrasive blasting or surface stripping. An illustration of the LCO₂ equipment used during this demonstration is shown in Figure 1 (page 27). It consists of a sealed pressure vessel, associated vacuum pumps and compressors and a CO₂ capture and recycle tank. During the evaluation period, a centrifuge and a hot oil process (HOP) tank with an ultrasonic generator were included and used to enhance the capability of the cleaning process. HOP oil is a proprietary formulation of a lightweight, low volatility hydrocarbon oil and surfactants. If heavily contaminated with soils, the

For Information Circle No. 71

Figure 1. Illustration of LCO₂ Equipment.

SUMMARY OF LABORATORY EVALUATIONS OF NVR FOR TUBES

item to be cleaned is first submerged in the HOP oil tank. Ultrasonic agitation can be incorporated in the HOP tank to further break the soils from the part's surface. The HOP oil is subsequently removed during the \mbox{LCO}_2 degreasing step.

Laboratory Feasibility Tests Prior to conducting the site demonstration, preliminary laboratory evaluations were conducted by cleaning parts similar to those anticipated during the demonstration. These tests were performed in a prototype of the equipment planned for use at RAFB. The prototype was functional, but not as fast or effective as the next generation of LCO₂ cleaning equipment to be produced. During these tests, contaminated aluminum fuel line tubing of varying lengths, diameters and shapes were cleaned. The parts were cleaned with the HOP oil first, followed by LCO₂. The HOP process was used because the drawing compound contained a combination of soaps and oils. LCO_2 by itself removed the oils, but not all of the soaps. The HOP/LCO₂ process removed the drawing compound as effectively as the TCA process from some of the tubes but not all of them. Tubes with smaller diameters or more bends were not cleaned as well as larger diameter, straight tubes. A summary of the results for these tests are shown in Table II.

Because some tubes were cleaned as well as with TCA even using the prototype equipment, it was decided that the LCO_2 results were good enough to warrant further testing and demonstration

- * Fast Cycle Times For Cleaning and Drying -
- * MACT Rated and SCAQMD Permitted -
- * Exceeds All EPA & OSHA Regulations -
- * Minimizes Solvent Usage -
- * Eliminates Water and Solvent Mixing -

- * Reduced Waste Disposal Costs -
- * No Steam Stripping of Carbon Beds -
- * Fully Automatic With Lower Operational Costs -
- * Specified by Aerospace and Automotive Co's.-

For more information on the unique, patented SEREC PROCESS, Contact: SEREC CORPORATION, P.O. Box 28129A, Providence, RI 02908, Tel. 401-421-6080 Fax. 401-521-5690

For Information Circle No. 72

Table II.

Figure 2. Brass filters before (left) and after (right) LCO₂ cleaning.

Table III.

Table IV.

at RAFB once the improved LCO_2 equipment was available.

Site Demonstration and Evaluation

The demonstration and evaluation was conducted at WR-ALC, GA, during August, 1995 to show the feasibility and capability of the LCO_2 process. Actual aircraft parts, including scrap parts and non-flight tools were cleaned during the demonstration. These parts were not placed back in the maintenance inventory after the cleaning tests because this cleaning process is not currently included in the parts specifications. A great variety of parts were selected for cleaning, including bearings, fuel system tubing, filters, bolts and other mechanical and structural aircraft parts. The demonstration incorporated HOP oil and ultrasonics to enhance and maximize the efficiency of the process.

The evaluation procedure to define the capability of the system was a combination of laboratory analytical testing and visual inspections conducted by the facility maintenance personnel. The final level of surface cleanliness achieved was quantified by measuring and comparing the amount of nonvolatile residue on parts cleaned by the TCA and LCO₂ processes. All NVR tests were performed by sonicating the cleaned or dirty parts in solvents that had been proven to be effective in removing the contaminants from the parts, followed by evaporating the solvents and weighing the residue. Because cleaning effectiveness was to be defined by comparison between parts cleaned by the two processes, it was not necessary to quantitatively determine the amount of contamination present on the surface of the parts before they were cleaned. This was important in the test evaluations since many of the parts provided were of various sizes, shapes and diameters.

Fuel Line Tubes

The fuel line tubes cleaned were contaminated with drawing compound with an average NVR of 5.462 g/ft². The HOP process was used prior to LCO_2 on the tubes since it was determined that the drawing compound was soluble in the HOP. **Table III** summarizes the results of the fuel line samples cleaned during the on-site evaluation. These tubes were cleaned as well by the HOP/LCO₂ process as those by the current TCA process.

Steel Bolts

Steel bolts are typically removed from aircraft during maintenance and repair. The bolts normally are cleaned, inspected and reintroduced into the inventory. When removed, they are encrusted with heavy grease and embedded soils. The current cleaning process used at the depot includes a pre-soak in a petroleum distillate similar to the hydrocarbon oil of the HOP process. The bolts are scrubbed with a brush to remove visible grease, then placed in a vapor degreaser containing TCA to remove the petroleum distillate and any grease residue. Finally, the bolts undergo an abrasive blasting process to remove rust and carbon deposits.

The LCO₂ process steps used were similar to the current process. The bolts were cleaned in HOP oil with ultrasonics followed by degreasing with LCO₂. **Table IV** shows the average NVR level remaining on the samples after cleaning with HOP and LCO₂. No bolts cleaned by the current process were available for comparison.

The results of the bolt cleaning evaluation by NVR and visual examination indicate that the bolts cleaned by the HOP/LCO₂ process were clean enough to be sent on to the next step, abrasive

Our innovative Kyzen® chemistry has produced a new **Chemicals** generation of SIAN natural, organic, tough cleaning solvents-lonox* and Aquanox aqueous alcoholbased formulations that are easy to use, biodegradable and completely water-soluble. These high performance, non- and low-flammable solvents work in virtually every type of cleaning system, removing the most difficult electronic, hybrid, microelectronic and no-clean residues. Approved by the U.S. EPA, the Department of Defense and NASA. Kyzen cleaning agents are used by all of the largest, world-wide electronics manufacturers. Kyzen chemicals - usually the solution. When matched with a complete process of cleaning and water reuse equipment - it's a different solution. Sarding Industrial Drive, Nashville, TN 37211 • 615 831-0888 n. forfox and Aquanox are registered trademarks of Kyzen Corporation

For Information Circle No. 73

SOLUTIONS FOR PRECISION

Continued from page 28

blasting. The HOP/LCO_2 process requires approximately the same steps as the current process; however, the LCO_2 process eliminates the use of TCA.

Brass Filters

The brass filters evaluated are used in aircraft propeller assemblies to filter hvdraulic fluid. The filter contaminants included hydraulic fluid, aircraft grease and heavy carbon deposits. A picture of brass filters is shown in Figure 2 (page 28). The current process to clean these parts includes soaking them overnight in a petroleum distillate (PD) formulation, then hand scrubbing with a brush, washing in water-based general purpose detergent, rinsing with water and drying in an oven. Due to the prolonged soaking and hand scrubbing, cleaning of this part is labor intensive and time consuming. Although the cleaning of the filters does not require the use of a CFC solvent, it does result in the generation of contaminated water stream. In addition, the process leaves visible black carbon deposits on the surface of the filter.

The HOP/LCO2 cleaning process consists of three steps compared to five for the current process. Hand scrubbing in HOP oil with no pre-soak replaces the overnight soak and hand scrubbing in the PD; and LCO₂ cleaning replaces washing in water and detergent, water rinsing and oven drying. An added blow-out technique using compressed shop air to dislodge particles trapped within the filter mesh improved the NVR of the filters. In addition, the filters cleaned with the HOP/LCO2 process were visually much cleaner and shinier than those cleaned with the current process. Table V (page 32) compares the NVR levels for the filters cleaned by various methods.

Processing Cost

During the two week evaluation period a total of 37 experimental batches were run. The LCO₂ recovery rate over the two week period was 94 percent. A total of 24 gallons of LCO₂ was lost during this time. At an average cost of approximately \$0.70 per gallon, the total LCO₂ cost was \$16.80. The spindle oil, which constitutes the major HOP cost, averages \$490.00 for 55 gallons. The HOP oil recovered during the LCO₂ degreasing step is recycled to the HOP tank. The spindle oil in the HOP tank can be reused indefinitely with disposal required only after it becomes

VarioClean[™]-The Best Cleaning Combination of Aqueous and Vacuum Technology

Abar Ipsen's VarioClean responds to today's environmental concerns for precision cleaning applications. The VarioClean uniquely combines aqueous and vacuum technology to work as effectively as, or better than vapor degreasers. The VarioClean eliminates the need for solventbased cleaning methods or other solutions.

The VarioClean's exclusive design includes immersion wash, twostage rinsing and vacuum drying – all in the same chamber. The stainless steel solution tanks are equipped with coalescing

and micron filtration to extend bath life and provide clean pa

life and provide clean parts. The equipment has a wide material compatibility, and is well suited to removing particulates, greases, and oils common to the heat treating and manufacturing industries. The VarioClean washes (through reduced pressure boiling or "vacuum boiling") and dries (with vacuum drying) the dense, heavy loads that are common in high-volume manufacturing, including atmosphere, salt or vacuum heat treat applications. **Cleaning is accomplished** without having to break down dense loads. In addition, with the added advantage of vacuum boiling, the VarioClean has the ability to completely clean and dry parts, even those with blind holes or complex part geometries.

The VarioClean is available in several standard horizontal load sizes compatible with existing heat treat lines, in three weight capacities, 1500lbs., 3000lbs., and 6000lbs. Custom configurations are available and quoted upon request.

Spray/Immersion Washing Low pressure spraying over the parts, followed-up with immersion washing, ensures complete contact with the aqueous cleaning solution. Vacuum boiling and/or air agitation enhances the cleaning action.

Pre & Final Rinsing with Water Low pressure spraying over the parts, followed up with immersion rinsing, provides complete contact with the rinse water solution, and is further enhanced through air agitation. The addition of a rust inhibitor in the rinse water bath prevents rusting.

Vacuum Drying Creating a vacuum around the parts, with the addition of super-heated air (or optional nitrogen), pulsed to maintain load temperature, allows fast and thorough drying.

984 lpsen Road • Cherry Valley, IL 61016 • (815) 332-4941 • Fax (815) 332-4995 • Toll Free: (800) 727-7625 Ask for Graham Legge, Product Manager

For Information Circle No. 51

See Us at IMTS Booth #A1 8714

saturated with contaminants to a point where it cannot complete its function. This contamination level was not achieved during the two week evaluation period.

The capital cost of the LCO₂ equipment will vary significantly depending on its configuration. It can be relatively high when compared to conventional vapor degreasing or aqueous cleaning. Equipment cost will depend on the size of parts to be cleaned, since it requires pressure vessels fabricated to hold the range of parts to be cleaned, and the ultimate configuration of the system. A realistic estimate of capital costs for a LCO₂ cleaning system and recycler is \$175,000 to \$350,000. However, the return on investment of the system should be weighed against the savings achieved in material costs, disposal costs, elimination of regulatory compliance costs and pollution abatement costs.

Conclusions

The LCO_2 process was shown to be equivalent to TCA in performance for cleaning the parts evaluated during this project. Successful introduction of the LCO_2 process into a facility will require a detailed knowledge of the contaminant to be removed, the desired surface cleanliness level and the configuration of the part. This knowledge will permit the LCO2 process to be effectively integrated into the production operation to achieve the required cleanliness level. PC

References

1. R. P. de Fillipi and M.E. Chung, "Laboratory Evaluation of Critical Fluid Extraction for Environmental Applications," EPA Report EPA-600/2-85-045, April 1985.

2. Katauskas, T. and H. Goldner, "SFE: Will it Solve Your Lab's Solvent Waste Problems?" R & D Magazine, March 1991, pp. 40-44.

3. Stahl, E., et. al, "Extraction of Seed Oil with Liquid and Supercritical Carbon Dioxide," J. Agric. Food Chem., Vol. 28, 1980, pp. 1153-1157.

4. Bok, Edward, K. Dieter, and K.S. Schumacher, "Supercritical Fluids for Single Wafer Cleaning," Solid State Technology, June 1992, pp.117-120.

5. McHardy, J., T.B. Stanford, L.R. Benjamin, T.E. Whiting, and S.C. Chao, "Progress in Supercritical CO_2 Cleaning," SAMPE Journal, Vol. 29, No. 5, September/October 1993, pp.20-27.

6. Phelps, M.R., M.O. Hogan, and L.J. Silva, "Fluid Dynamic Effects on Precision Cleaning with Supercritical Fluids," In: Conference Proceedings for 1994 International CFC and Halon Alternatives Conference, October 24-26, Washington, DC, pp.540-549.

7. Barton, A.F.M., Handbook of Solubility Parameters and other Cohesion Parameters,

100% recyclable

- Chemical resistant
- Economical
- Wire mesh liners
- Slotted stainless steel liners
- 2 sizes available:
- Heavy duty 11.75" x 17.75" x 6.25" Durable 8.75" x 11.75" x 6.25" Tank tuff Lids available Made in USA

222

For Information Circle No. 76

Light weight

CRC Press, Boca Raton, 1983, pp 153-158. 8. Determined from Figure 3-45 and Table 3-283 of: R. H. Perry and C.H. Chilton, Chemical Engineer's Handbook, 5th Edition, McGraw-Hill Book Company, 1973. 9. Handbook of Chemistry and Physics, 56th Edition, CRC Press, Boca Raton, FL, 1975.

Notices

The information described in this paper has been funded wholly by the Environmental Protection Agency (EPA) under Cooperative Agreement No. CR818419 to Research Triangle Institute. It has been subjected to Agency review and approved for publication.

The use of trade names and company names in this paper does not signify recommendation for use or endorsement by either the EPA or Research Triangle Institute.

The LCO2 cleaning and recycling equipment, the hot oil process (HOP) material, and related processes, designs and operations used in this investigation described in this paper are and proprietary to DEFLEX Corporation and are the subject matter of issued patents and pending patents and applications. DEFLEX Corporation, Burbank, CA, a member of the technical team, provided the LCO₂ cleaning equipment. Nobles

SUMMARY OF NVR LEVELS FOR BRASS FILTERS

Table V.

About the Authors

Charles Darvin received a B.S. in mechanical engineering from the Univeristy of Evansville, IN. Currently, Darvin is a research engineer specializing in industrial process research and development for the reduction of volatile organic compounds and hazardous air pollutants emissions for the EPA in Research Triangle Park. Additionally, Darvin has been awarded one EPA silver and two bronze medals for his work in pollution control research and has received one patent for his work in spray booth design. He may be reached at (919) 541-7633.

Elizabeth A. Hill earned a B.S. and M.S. degrees in analytical chemistry from Northern Illinois University and the University of Colorado, respectively. Currently, Hill is a senior research engineer and the manager for the Surface Cleaning Technology Program at Research Triangle Institute in North Carolina. Hill has more than 14 years experience in precision surface cleaning, process development and contamination control. She may be reached at (919) 541-6747, by fax at (919) 541-6936 or via e-mail at LizH@rti.org.

tank and generator systems

The best, state-of-the-technology ultrasonic products and aqueous cleaners are always on hand, including world-renowned Branson

Sound Solutions for Industry 130 Lenox Avenue, Unit 23 • Stamford, CT 06906 1-800-243-2452 • 203-348-8088 (in Conn.) Visa and Mastercard Accepted.

For Information Circle No. 79