MERCURY USE: INDUSTRY

Mercury has a number of unique properties that make it a valuable metal in industry. The metal is very dense (13.5 g per cc) and does not readily react with non oxidizing acids. It is the only heavy metal that is a liquid at room temperature. However, mercury vaporizes easily; simply exposing the metal to air or blowing air through it will release it in a gaseous state. Fluorescent lights and mercury-vapor lamps rely on mercury’s high vapor pressure (it vaporizes quickly when current is applied), high electrical conductivity, and its ability to emit UV light when it is excited (phosphors in the lamps convert this invisible light to visible light). Mercury alloys easily with almost any metal (except iron, which is sometimes used for mercury containers) and forms amalgams.

Sources: M2P2, DOD letter/report Nov 13, hunt for quicksilver

Mercury can potentially be used or released in an industrial process through five different routes:

1. A component in equipment (e.g., switches, gauges, thermometers)
2. An ingredient in chemicals or laboratory chemicals (e.g., phenylmercuric acetate)
3. A contaminant in raw materials (e.g., caustic soda)
4. An intentional introduction of mercury in manufactured products (e.g., manometer production plant)
5. An incidental release due to a production process (e.g., coal combustion)
ABOUT THIS HANDOUT

This is one chapter of the “Wisconsin Mercury SourceBook.” The Sourcebook was written as a guide for communities to help identify and reduce the purposeful use of mercury. The SourceBook contains background information on mercury contamination and provides a seven-step outline for drafting a mercury reduction plan.

This handout is one of the nineteen sectors that were highlighted in the SourceBook as a potential contributor of mercury in any given community.

What you will find in this handout:

★ Information on mercury-containing products and that are unique to industrial facilities

★ Information on mercury-containing products that are found both in industrial facilities and in a wide variety of other sectors (e.g., fluorescent lamps, switches)

★ Case studies that describe the source substitution experiences of other industries

★ Action ideas that describe pollution prevention, recycling, and management practices for a mercury reduction plan for an industry. This provides a good overview of the types of mercury-containing products and alternatives that may exist in the industrial sector.

★ A sample proclamation that explains the mercury issue and possible mercury minimization options for industries

★ Current mercury projects in this sector

For more information, please contact:
WHY SHOULD I BE CONCERNED ABOUT MERCURY?

Some of you may remember playing with mercury when you were a child. Its silvery white shimmer was entrancing, and the ability of its glistening mass to split and come back together again was magical. But scientists are now beginning to realize that there is another side to mercury’s wily nature. In fact, it is some of mercury’s most elemental qualities that make it a difficult substance to handle.

Mercury is a common element that is found naturally in a free state or mixed in ores. It also may be present in rocks or released during volcanic activity. However, most of the mercury that enters the environment in Wisconsin comes from human uses.

Because mercury is very dense, expands and contracts evenly with temperature changes, and has high electrical conductivity, it has been used in thousands of industrial, agricultural, medical, and household applications.

It is estimated that half of the anthropogenic mercury releases in Wisconsin are the result of the purposeful use of mercury. The other half of mercury emissions originate from energy production.

Major uses of mercury include dental amalgams, tilt switches, thermometers, lamps, pigments, batteries, reagents, and barometers. When these products are thrown in the trash or flushed down a drain, the mercury doesn’t go away.

The good news is that the majority of products that use mercury purposefully have acceptable alternatives. For example, electric vacuum gages, expansion or aneroid monitors are good alternatives to mercury blood pressure monitors. Mechanical switches, magnetic dry reed switches, and optic sensors can replace mercury tilt switches.

Replacing mercury-laden products with less toxic alternatives is referred to as source reduction. Source reduction allows us to eliminate the use of mercury in certain waste streams. This is especially beneficial considering the volatile nature of mercury, because mercury can so easily transfer from air to soil to water.

Practicing source reduction in combination with recycling the mercury already in the waste stream can have a significant impact on reducing mercury levels in the environment.

HEALTH EFFECTS OF ELEMENTAL MERCURY

The toxicity of mercury has long been known to humans. Hat makers during the 19th century developed symptoms of shaking and slurring of speech from exposure to large amounts of inorganic mercury, which was used to give a metallic sheen to felt hats. This gave rise to the term “mad as a hatter.”

The hat makers were suffering from neurological damage from the inhalation of mercury fumes. Exposure to elemental mercury vapors can cause acute respiratory problems, which are followed by neurologic disturbances and general systemic effects. Acute exposure to inorganic mercury by ingestion may also cause gastrointestinal disturbances and may effect the kidneys.

SO WHAT’S THE BIG DEAL?

Mercury is a bioaccumulative, persistent, toxic substance that threatens the health of humans and wildlife throughout North America. The USEPA, Environment Canada, the International Joint Commission, the Commission for Environmental Cooperation and many state and provincial governments have identified mercury as one of the most critical pollutants for significant elimination and/or reduction.
Mercury can enter the environment from a number of paths. For example, if a mercury-containing item is thrown into the garbage, the mercury may be released into the atmosphere from landfill vapors or leachate, or the mercury may vaporize if the trash is incinerated. If mercury is flushed through a wastewater system, the mercury will likely adhere to the wastewater sludge, where it has the potential to volatilize and be deposited elsewhere. Mercury can enter the atmosphere through these various means because it evaporates easily. It then travels through the atmosphere in a vaporized state.

Once mercury is deposited into lakes and streams, bacteria convert some of the mercury into an organic form called methylmercury. This is the form of mercury that humans and other animals ingest when they eat some types of fish. Methylmercury is particularly dangerous because it bioaccumulates in the environment. Bioaccumulation occurs when the methylmercury in fish tissue concentrates as larger fish eat smaller fish. A 22-inch Northern Pike weighing two pounds can have a mercury concentration as much as 225,000 times as high as the surrounding water.

These concentrations are significant when one considers the potential toxic effects of methylmercury. Methylmercury interferes with the nervous system of the human body and can result in a decreased ability to walk, talk, see, and hear. In extreme examples, high levels of methylmercury consumption has resulted in coma or death.

Many animals that eat fish also accumulate methylmercury. Mink, otters, and loons in Wisconsin have been found to have high levels of mercury in their tissue. Mercury can interfere with an animal’s ability to reproduce, and lead to weight loss, or early death.

Fish Consumption Advisories

There are currently 260 lakes and more than 350 miles of rivers in Wisconsin that have fish consumption advisories because of mercury. Approximately 1 out every 3 sites that is tested is listed on the advisory; no sites have ever been removed. Forty-eight states now issue fish consumption advisories to protect human health. Most of these warnings are related to mercury contamination.
What Kind of Industries Are Covered in this Chapter?

We will look both at the customers using mercury-containing items (#1-3) and the facilities that produce or recycle these items (#4). Because mercury is present in low levels in rocks and ores, it may also be released as a by-product during a manufacturing process or through power generation (#5).

Industries that use or manufacture mercury-containing products may include:

✔ Industries that use or manufacture measuring or controlling equipment (e.g., thermometers, pressure sensing devices, navigational or electrical equipment, seals, valves)

✔ Facilities that do extensive laboratory testing on-site

✔ Industries that use caustic soda or sulfuric acid

✔ Recyclers of mercury containing products (e.g., instrument and electrical manufacturing, industrial waste and scrap, sludges from research laboratories)

✔ Facilities that have on-site boilers

✔ Industries that produce mercury as a by-product of their production process (e.g., lime production, petroleum refining)

Please note that there are special chapters for the following industries:

* Automotive Industry
* Chemical Manufacturer/User Industry
* Food Processing Industry
* Laboratories
* Paper Mills

Sewer Pipes

Mercury was used extensively in industrial settings in the past. Often times the mercury may have found its way into the pipes of an industry when items were broken, disposed of, or spilled. This mercury can settle at a low point such as a sump or trap and remain in the pipes of a industry for many years. Often the slow dissolution of the mercury in a sump, trap, or pipe is enough to cause violations of wastewater discharge standards even after poor management practices have been eliminated. Hot spots in a industry’s piping may appear where equipment maintenance areas were located. Whenever traps or sumps are moved or cleaned, the solid contents should be treated as a hazardous waste unless proven otherwise. For more information, please see the excerpts from the MWRA/MASCO Infrastructure Subcommittee Maintenance Guidebook that appear in the “Resources” section of this sourcebook.
A COMPONENT IN EQUIPMENT

- Batteries
- Cleaning Solutions
- Gauges and manometers
- Fluorescent lamps
- Specialty lamps
- Switches, relays, and sensors
- Thermometers
- Thermoelectric devices
- Thermostat Probes

Mercury Product Focus: Batteries

- Mercuric Oxide Batteries

Prior to the 1980s, most primary batteries and some storage batteries contained mercury in the form of mercuric oxide (HgO), zinc amalgam (Zn-Hg), mercuric chloride (HgCl₂), or mercurous chloride (Hg₂Cl₂). Although the amount of mercury used in each of these batteries was very small, the number of batteries sold in the US was enough to make alkaline batteries the largest component of mercury in the solid waste stream in 1989.

Great pollution prevention progress has been made in this field. In the last decade, the US battery industry has achieved a 99 percent reduction in their use of mercury! The use of alternative materials and different manufacturing techniques have eliminated the use of mercury in almost all battery applications.

Mercury does exist in mercury zinc, carbon zinc, silver oxide, and zinc air batteries. The amount of mercury discarded in mercury zinc batteries is expected to decline in the future as the use of silver oxide and zinc air batteries increases. The use of mercury in zinc air and silver oxide batteries is expected to be discontinued.

Today, mercuric oxide batteries are the only batteries that use mercury to any measurable degree. There are two basic types of mercuric oxide batteries: button cell and larger sizes. The button cell batteries are the types that are most often sold for personal use; they are used in hearing aids, watches, and other items requiring a small battery.

Mercuric oxide batteries offer a reliable and constant rate of discharge. Therefore, the larger mercuric oxide batteries (which look like 9-volt or fat AA batteries) are often used in military, hospital, or industrial uses. The mercury content in these mercury oxide batteries total 33 to 50 percent mercury by weight of the battery.

1993 Wisconsin Act 74

The 1993 Wisconsin Act 74 prohibits the sale in Wisconsin of any alkaline manganese battery manufactured after January 1, 1996, unless the manufacturer can prove that the alkaline manganese battery contains no intentionally introduced mercury. Alkaline manganese button cells can only be sold if they contain no more that 25 mg of mercury.

Zinc Carbon batteries manufactured after July 1, 1994 for sale in Wisconsin must contain no intentionally introduced mercury. Beginning July 1, 1994 mercuric oxide batteries, except button cells, may not be sold in Wisconsin unless the manufacturer identifies a collection site that meets prescribed standards, informs each purchaser of the collection site and a telephone number to call for information on recycling batteries, and informs the Department of Agriculture, Trade, and Consumer Protection and DNR of this collection site. The law also states that only a certified collection site may treat, store, or dispose of mercuric oxide batteries, and they must be recycled if possible.
Batteries and Mercury Content

<table>
<thead>
<tr>
<th>Type of Battery</th>
<th>Example of Use</th>
<th>Mercury Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylindrical or rectangular cells; the most commonly recognized battery. Labeled “alkaline.”</td>
<td>Flashlight, radios, toys, calculators, remote controls, electronic games, portable radios and televisions, garage door openers.</td>
<td>Previously contained an average of 0.5 percent mercury to control the zinc reaction. 1993 Wisconsin Act 74 mandates that all alkaline manganese batteries sold in Wisconsin after January 1, 1996 be mercury free. Alkaline manganese button cell batteries to contain no more than 25 milligrams of mercury.</td>
</tr>
<tr>
<td>Zinc Carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylindrical or rectangular cells; labeled as “General Purpose”, “Heavy Duty”, or “Classic”</td>
<td>Best used in slow drain applications like clocks, garage door openers, pagers, and smoke detectors. Have much shorter life span than Alkaline batteries.</td>
<td>Use of mercury in these batteries is being phased out. 1993 Wisconsin Act 74 mandates that all zinc carbon batteries for sale after July 1, 1994 be mercury free.</td>
</tr>
<tr>
<td>Silver Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button shaped with no distinguishing marks</td>
<td>Watches, calculators, toys, greeting cards, musical books</td>
<td>Contain about one percent mercury by weight. Mercury use in these batteries is expected to be discontinued.</td>
</tr>
<tr>
<td>Zinc Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usually button shaped. Identify by pin hole on one side</td>
<td>Hearing aids</td>
<td>Contain about one percent mercury by weight. Mercury use in these batteries is expected to be discontinued.</td>
</tr>
<tr>
<td>Mercury Zinc (Mercuric Oxide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button shaped, marked with +; larger mercuric oxide batteries look like 9-volt or fat AA batteries</td>
<td>Hearing aids, watches, and other items requiring a small battery. In consumer applications, mercuric oxide batteries are being replaced by zinc-air button cells. The larger mercuric oxide batteries are often used in military, hospital, or industrial uses.</td>
<td>Contain significant amounts of mercury; total 33 to 50 percent by weight of the battery. Wisconsin Act 74, requires a collection system for those selling mercuric oxide batteries, and requires the recycling of mercuric oxide batteries unless no reasonable alternative exists.</td>
</tr>
</tbody>
</table>
The Massachusetts Water Resources Authority (MWRA), in conjunction with MASCO (a consortium of Longwood Medical and Academic Area Institutions), has been working with their area hospitals and academic institutions to identify and address the problem of mercury contamination in hospital and medical waste streams. As part of this process, the MWRA group also worked to identify “other sources” of mercury contaminants. These are common products, such as bleach, alcohol, laboratory lids, not otherwise thought to be of significant importance or concern, that might contain low levels of mercury. Thus far, a total of 118 products has been identified by this team. This information is applicable in a variety of settings.

<table>
<thead>
<tr>
<th>Product</th>
<th>Mercury Content (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajax Powder</td>
<td>0.17</td>
</tr>
<tr>
<td>Comet Cleaner</td>
<td>0.15</td>
</tr>
<tr>
<td>Lysol Direct</td>
<td><0.011</td>
</tr>
<tr>
<td>Soft Scrub</td>
<td><0.013</td>
</tr>
<tr>
<td>Kodak Fixer</td>
<td>6.9; 3.7</td>
</tr>
<tr>
<td>Kodak Developer</td>
<td>2.65; 6.0</td>
</tr>
<tr>
<td>Alconox Soap</td>
<td>0.004 mg/ kg</td>
</tr>
<tr>
<td></td>
<td>0.005 mg/ kg</td>
</tr>
<tr>
<td></td>
<td><0.0025 mg/ kg</td>
</tr>
<tr>
<td>Derma Scrub</td>
<td><5.0</td>
</tr>
<tr>
<td></td>
<td><2.5</td>
</tr>
<tr>
<td>Dove Soap</td>
<td>0.0027</td>
</tr>
<tr>
<td>Ivory Dishwashing Liquid</td>
<td>0.061</td>
</tr>
<tr>
<td>Joy Dishwashing Liquid</td>
<td><0.01</td>
</tr>
<tr>
<td>Murphy’s Oil Soap</td>
<td><0.012</td>
</tr>
<tr>
<td>Soft Cide Soap (Baxter)</td>
<td>8.1</td>
</tr>
<tr>
<td>Sparkleen Detergent</td>
<td>0.0086</td>
</tr>
<tr>
<td>Sunlight Dishwashing Detergent</td>
<td><0.011</td>
</tr>
</tbody>
</table>
Mercury Product Focus: Gauges - Manometers, Barometers, and Vacuum Gauges

(From blue waste connection pamphlet)

- Air flow measurement devices using a Pitot Tube and manometer (may also be called an airway controller)
- Commercial-industrial manometers
- Permeter (used to measure permeability of sand mass to flow of air)

Many industries may encounter liquid mercury in the gauges found in manometers or vacuum gauges. The mercury in these gauges responds to air pressure in a precise way that can be calibrated on a scale. Mercury-free alternatives to these gauges operate on the same principle as these gauges but use mercury-free liquids in the tube.

Needle or bourdon gauges operate under a vacuum with a needle indicator. Electronic gauges can be used to measure pressure, but they must be calibrated with a mercury manometer. Equipment manufacturers recommend that service technicians use a needle or digital gauge to test the systems they are servicing, but that they calibrate the gauges they use in the field with a mercury manometer kept at their shop.

Mercury manometers occasionally need servicing to maintain their accuracy, and elemental mercury often remains as a waste. If the manometer is hard to read because of dirt and moisture in the tube, the mercury needs to be removed and replaced.

Mercury Product Focus: Lamps

- Cold Cathode Lamps - illumination
- Spectral Lamps - monochromatic light source
- Fluorescent Lamps
 - bilirubin blue
 - blacklight
 - general purpose straight, u-bent, circline, compact
 - high output
- Germicidal Lamps
 - cold cathode
 - hot cathode
 - slimline
- High Intensity Discharge
- “CS - compact source” mercury lamps
- “special mercury lamps” (UV properties)
- high pressure sodium lamps
- mercury vapor lamps
- metal halide lamps

There are a number of electric lamps that use mercury as an intrinsic part of their functioning. These lamps include fluorescent, mercury vapor, metal halide, and high pressure sodium lamps. These lamps may be used indoors or outdoors in heat lamps, film projection, photography, dental exams, photochemistry, water purification, or street lighting.

Fluorescent lamps contain mercury in a vapor form. The electric current of the lamp “excites” the mercury atoms, which then give off invisible ultraviolet light. The ultraviolet light then “excites” a powdery phosphorus coating inside the tube that emits visible light. The mercury that is contained in these lamps is emitted into the atmosphere when the lamps are broken, disposed of in landfills, or incinerated.

Fluorescent lamps are still a good option. They last longer and cost less to run than incandescent lights because they use up to 50 percent less electricity. This energy savings helps reduce mercury emissions because small amounts of mercury are present in coal that is burned in power plants. The less energy we use, the less mercury will be released into the environment when coal is burned.
Recycling Your Fluorescent Lamps

Several Wisconsin companies are in the business of recycling fluorescent lamps and incandescent bulbs. The copper coils, and aluminum or brass end pieces are smelted and reused as raw materials for non-food products. The glass can be purified and used to make fiberglass. The mercury is distilled from the phosphor powder and reused in new lamps and thermometers.

State hazardous waste regulations prohibit businesses from disposing of waste lamps and light bulbs in sanitary landfills if those lamps and bulbs contain levels of heavy metals that exceed hazardous waste limits. For information on the storage, collection, and transport of fluorescent lamps, please see the informational handout, “Recycling Your Fluorescent Lamps,” in the “Resources” section of this sourcebook.

New Low Mercury Fluorescent Bulb

Phillips Electronics has developed a long-life fluorescent that contains so little mercury it is no longer considered a hazardous waste. “Typically fluorescent lamps have an overabundance of mercury, because mercury loses its effectiveness due to physical and chemical reactions. So manufacturers put in an overdose of mercury to compensate for these reactions,” said George Preston, a scientist at Philips Lighting Co. Currently, a four-foot lamp contains about 22.8 milligrams of mercury, down from 38.4 milligrams in 1990. Philips’s new lamp contains less than 10 milligrams of mercury. The new lamp, named ALTO™, relies on a “buffering mechanism” that blocks the physical and chemical reactions that cause the mercury to lose its effectiveness over time. The lamp also uses a new form of phosphors patented by Philips.

Types of Bulbs and Lamps that Contain Mercury

- **Fluorescent Lamps** - the tube-style were first used as overhead lighting in offices, now they also come in compact globe shapes for a variety of home and office uses
- **Mercury Vapor Lamps** - the first high intensity discharge (HID) lamps with blue-white light, originally used as farmyard lights
- **Metal Halide Lamps** - newer, more efficient HID lights found in homes and offices
- **High-Pressure Sodium Vapor Lamps** - white-yellow HID lights used for street lamps and outdoor security lighting
- **Neon Lamps** - brightly colored lamps typically used in advertising; most colors contain mercury except red, orange, and pink

- From the Wisconsin Recycling Markets Directory
Mercury Product Focus: Switches and Relays

✔ G-sensors (security system applications)
✔ Oscillators
✔ Phanatrons
✔ Proximity sensors, magnetically activated
✔ Rectifiers
✔ Wetted reed relay/wetted reed switch: test, calibration, measurement equipment

(used where stable contact resistance over the live of the product is necessary. For specialized equipment - mass produced applications do not need)

Displacement/Plunger Relays:
Mercury to Steel or Tungsten Contact; Mercury to Mercury Contact

✔ Industrial process controllers
✔ High current/voltage lighting
✔ Power supply switching
✔ Resistance heating
✔ Tungsten lighting
✔ Welding

Tilt Switches:
Including SPST, SPDT, NO, NC, wide angle, omnidirectional, circuit board mount
✔ “man down” alarms
✔ “silent” wall switches, single pole and three way (believed to be totally discontinued in 1991)
✔ Airflow/fan limit controls
✔ Building security systems (tilt and trembler devices)
✔ Cameras (still, video, film: overridable position sensor to protect CCD from sunlight damage)
✔ Fluid level control (mounted on float, on lever arm, on diaphragm or on plunger)
✔ Laptop computer (screen shut-off when closed)
✔ Level sensors and controls (likely in vehicle and aircraft applications)
✔ Marine auto-pilot
✔ Pneumatic tube communication systems
✔ Portable phone (mute/privacy switch when phone is in horizontal position)
✔ Pressure control
✔ Safety shut-off/limit switches for industrial machinery
✔ Safety shut-off - outboard motors
✔ Temperature control

Another source of mercury that industries may encounter is mercury switches. A small electrical switch may contain 3,500 milligrams of mercury; industrial switches may contain as much as eight pounds of mercury. Mercury is used in temperature-sensitive switches and in mechanical switches. The mechanical (tilt) switches are activated by a change from a vertical to a horizontal position. These are used in products like thermostats and silent switches. Mercury-containing tilt-switches may also be present in or under the lids of clothes washers and chest freezers - they stop the spin cycle or turn on a light. Mercury tilt switches are also found in motion-sensitive and position sensitive safety switches in clothes irons or space heaters. If a mechanical switch is not visible in these items, a mercury switch is probably being used.

Mercury tilt switches have been used in thermostats for more than 40 years. According to Honeywell, Inc., a major manufacturer of thermostats, more than 50 million mercury-containing thermostats have been sold since the 1950s for use in homes and offices. Mercury in these thermostats provide accurate and reliable temperature control, require little maintenance, and do not need a power source. However, each mercury switch in a thermostat contains about 3 grams of mercury. (There may be one or more of these switches in a single thermostat, each switch in a sealed glass bulb.) Alternatives to these
products include electronic thermostats, which can be programmed to set room temperatures at predetermined times. *(blue brochure: the waste connection)*

Float control switches may be used in septic tank and sump pumps to turn the equipment on and off when water is at a certain level. Often, these switches are visible. Temperature-sensitive switches may be used in thermostats. Yet another type of mercury switch, the plunger or displacement relay, is used in high current, high voltage applications that could include lighting, resistance heating, or power supply switching (M2P2).

Reduction Works!

Honeywell Corporation has been running a free take-back program in Minnesota to collect any brand of used mercury-containing thermostat through either a reverse distribution system or a recycle by-mail system.

Honeywell works with heating, ventilating, and air-conditioning (HVAC) wholesalers who sell their products. Honeywell has one license (called a network license) for all the wholesalers who are participating as a consolidation point for the thermostats. HVAC wholesalers contact their Honeywell customer service representatives to order containers for used thermostats, and Honeywell sends the wholesaler a plastic container with an attached lid that holds 100 thermostats.

Homeowners who replace their own thermostats without contractor assistance or with contractors who are not currently participating in the Honeywell program may recycle their thermostats through the free recycle-by-mail system. These individuals can call a toll-free number to receive a free postage paid thermostat mailer.

Mercury Switches in Electrical Applications

(source: Michigan Mercury Pollution Prevention Task Force, 1996)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Quantity of Mercury</th>
<th>Available Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Thermostats</td>
<td>3,000 - 6,000 mg</td>
<td>Electronic type and snap switches</td>
</tr>
<tr>
<td>- Float Control (septic tank and sump pumps)</td>
<td>?</td>
<td>Magnetic dry reed switch, optic sensor, or mechanical switch</td>
</tr>
<tr>
<td>- Freezer Light</td>
<td>2,000 mg</td>
<td>Mechanical switch</td>
</tr>
<tr>
<td>- Washing Machine (power shut off)</td>
<td>2,000 mg</td>
<td>Mechanical switch</td>
</tr>
<tr>
<td>- Silent Switches (light switches prior to 1991)</td>
<td>2,600 mg</td>
<td>Mechanical switch</td>
</tr>
</tbody>
</table>

Thermo-Electrical Applications		
- Accustat (*"mercury in glass thermostat,"* a calibrated device resembling a thermometer is used to provide precise temperature control for specialized applications)	~ 1,000 mg	?
- Flame Sensor (used in residential and commercial gas ranges, mercury is in capillary tube when heated mercury vaporizes and opens gas valve or operates switch. Used for both electrical or mechanical output.)	2,500 mg	Hot surface ignition system for devices or products that have electrical connections.
Mercury Product Focus: Thermo-electric Devices

✔ Mercury in glass thermostat tubes and devices

Tube is thermometer-like device; mercury column opens and closes circuit via metal contacts. 1, 2, or 4 tubes used in conjunction with relay control device. Mercury-thallium models for temperatures to -60 C.

✔ Thermoregulator

An adjustable mercury in glass device with an electrical output dependent on the position of the mercury column.

Mercury Product Focus: Thermometers

✔ ASTM and laboratory
✔ cup case
✔ incubator/water bath
✔ Mason’s Hygrometer
✔ maximum registering
✔ minimum/maximum
✔ sling psychrometer
✔ tapered bulb
✔ weather

Digital or aneroid thermometers are good alternatives for most applications of mercury thermometers.

Mercury Product Focus: Thermostat Probes (also known as mercury thermocouples)

(from blue waste connection pamphlet + draft text)

✔ Mercury Flame Sensor/ Mercury Safety Valve
✔ “Cycle pilot” devices
✔ Some infrared heaters (Robertshaw and Harper-Wyman)
✔ Some furnaces (White Rodgers)

Stainless steel bulb, capillary tube, bellows/control device: Used for “unsupervised burners” in certain gas fired devices with standing pilot or electronic ignition pilot.

Mercury-containing thermostat probes may be found in several types of gas-fired appliances that have pilot lights such as ranges, ovens, clothes dryers, water heaters, furnaces, or space heaters. The metal probe consists of a metal bulb and thin tube attached to a gas-control valve. The mercury is inside the tube and expands or contracts to open and shut the valve. A high percentage of gas stoves, ovens, and space heaters contain a mercury thermostat probe. Electric stoves and hot water heaters (gas, electric, and oil) may contain mercury thermostat probes. Although non-mercury thermostat probes have been used in these appliances, you should treat all probes as though they contain mercury, unless you know that they do not.

Mercury thermostat probes, also known as flame sensors or gas safety valves, are most commonly present as part of the safety valve that prevents gas flow if the pilot light is not lit. In this application the bulb of the thermostat probe projects into or near the pilot light. These are commonly present in gas ovens and may be present in any other appliance with a pilot light.

A mercury-thermostat probe may also be present as part of the main temperature controlling gas valve. In this application, the probe is in the air or water that is being heated and is not directly in contact with any flame. These are typically found in older ovens, clothes dryers, water heaters, or space heaters.
2 MERCURY AS AN INGREDIENT IN CHEMICALS OR LABORATORY CHEMICALS

Chemical reagents, used with regularity in a wide range of laboratory testing, are likely sources of mercury contamination. The difficulty of identifying which chemicals and reagents contain mercury is compounded by the fact that Material Safety Data Sheets (MSDS) are not required to list the hazardous components of a product unless that component is present at a level of \(\geq 1\% \) (0.1\% for carcinogens). This means that a particular product could contain up to 10,000 parts per million of mercury before the manufacturer would have to alert users of that fact.

(MWRA operations subcommittee final report)

Work by the MPCA

John Gilkeson of the Minnesota Pollution Control Agency has compiled an extensive list of all mercury-containing compounds that are currently available for research and scientific purposes. He has also developed a list of all mercury-containing compounds with a CAS number. These charts are attached at the end of the “chemical” chapter.

A number of facilities have discovered that mercury is present in very low levels in some of their products. However, because the mercury was added as a preservative, not as an active ingredient, its low level may be below the reporting threshold and thus not included in the Material Safety Data Sheets (MSDS) sheets.

(gilkeson, butterworth, Metpath)

Mercury-Containing Chemicals and Alternatives

compiled from City of Detroit, MPCA, Terrane, Michigan M2P2

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury (II) Oxide</td>
<td>Copper catalyst</td>
</tr>
<tr>
<td>Mercury Chloride</td>
<td>None Identified</td>
</tr>
<tr>
<td>Mercury (II) Chloride</td>
<td>Magnesium Chloride/ Sulfuric Acid or Zinc Formalin, Freeze drying</td>
</tr>
<tr>
<td>Mercury (II) Sulfate</td>
<td>Silver Nitrate/ Potassium/ Chromium-(III) Sulfate</td>
</tr>
<tr>
<td>Mercury Nitrate (for corrosion of copper alloys) for antifungal use (mercurochrome)</td>
<td>Ammonia/ Copper Sulfate Neosporin, Mycin</td>
</tr>
<tr>
<td>Mercury Iodide</td>
<td>Phenate method</td>
</tr>
<tr>
<td>Sulfuric Acid (commercial grade; mercury as impurity)</td>
<td>Sulfuric acid from a cleaner source</td>
</tr>
<tr>
<td>Zenker's Solution</td>
<td>Zinc Formalin</td>
</tr>
</tbody>
</table>
Work by The Massachusetts Water Resources Authority
Reagents: The Mercury Products Database
The Massachusetts Water Resources Authority (MWRA), in conjunction with MASCO (a consortium of Longwood Medical and Academic Area Institutions), has been working with their area hospitals and academic institutions to identify and address the problem of mercury contamination in hospital and medical waste streams. The Operations Subcommittee of this group set out to identify mercury in reagents. As part of this process, a database worksheet was developed to capture the wide range of information known to contain mercury. Next, a letter was sent to 153 major reagent vendors to elicit supplier support in identifying the trace levels of mercury contained in their products. The letters also requested that suppliers provide verification of product mercury content via the submission of a state certified laboratory report.

Using all available inputs, a total of 5,504 products were identified and inventoried into the master database using both vendor and member responses to requests for information. The statistics for their findings are as follows:

- Total number of products inventoried: 5,504
- Number of records that contain mercury data: 781
- Number of records that contain mercury concentrations below detection: 166
- Number of records with mercury concentrations BD - 1 ppb: 43
- Number of records with mercury concentrations 1 - 5 ppb: 53
- Number of records with mercury concentrations 5 - 10 ppb: 19
- Number of records with mercury concentrations > 10 ppb: 469
- Number of records under review of concentration data: 31

Due to the size of the overall Mercury Products Database, only that portion of it which contains chemicals and products that have been verified, as of 8/21/95, to contain mercury at some level, have been included in the report to the right.

75 Priority Samples
In an attempt to maximize the value of the database, MWRA selected seventy-five (75) of the most commonly used products by member hospitals and institutions and tested these for mercury content.

The analysis results for these 75 priority samples are shown on the following page.
Results from 75 Priority Samples

Information from The Massachusetts Water Resources Authority (MWRA), in conjunction with MASCO (a consortium of Longwood Medical and Academic Area Institutions)

<table>
<thead>
<tr>
<th>Product Sampled</th>
<th>Mercury Content (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven Deionized Water Samples</td>
<td><0.0010</td>
</tr>
<tr>
<td>Periodic Acid</td>
<td><0.0010</td>
</tr>
<tr>
<td>Acetone</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Iodate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td><0.0010</td>
</tr>
<tr>
<td>Aluminum Potassium Sulfate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Boric Acid</td>
<td><0.0010</td>
</tr>
<tr>
<td>Butter Solution pH -7</td>
<td><0.0010</td>
</tr>
<tr>
<td>Fixer</td>
<td>0.0049</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>0.012</td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td><0.0010</td>
</tr>
<tr>
<td>Herpes Buffer</td>
<td><0.0010</td>
</tr>
<tr>
<td>Phosphate Buffered Saline</td>
<td><0.0010</td>
</tr>
<tr>
<td>Potassium Carbonate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Carbonate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td>0.010</td>
</tr>
<tr>
<td>Sodium Bisulfate</td>
<td><0.0010</td>
</tr>
<tr>
<td>TDX</td>
<td><0.0020</td>
</tr>
<tr>
<td>TRIS</td>
<td><0.0010</td>
</tr>
<tr>
<td>Triton X-100</td>
<td><0.0010</td>
</tr>
<tr>
<td>Oxalic Acid</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Phosphate Dibasic</td>
<td><0.0010</td>
</tr>
<tr>
<td>3%, 30% Hydrogen Peroxide</td>
<td>0.0012</td>
</tr>
<tr>
<td>Isopropyl Alcohol</td>
<td><0.0010</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td><0.0019</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td><0.0010</td>
</tr>
<tr>
<td>Silver Nitrate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td><0.0010</td>
</tr>
<tr>
<td>Trizma Buffer</td>
<td><0.0010</td>
</tr>
<tr>
<td>Sodium Phosphate Monobasic</td>
<td><0.0010</td>
</tr>
</tbody>
</table>
A CONTAMINANT IN RAW MATERIALS

Caustic Soda
Manufacturing plants may use chlorine, caustic soda, or muriatic acid to treat water or to assist in the production of paper products, cosmetics, pharmaceuticals, or food products. Manufacturing plants may dilute sodium hydroxide or potassium hydroxide and use it to regenerate ion exchange resin, adjust the pH of water or process feedstocks, or in their intermediate or final processes. Additionally, caustic soda may be used to treat “cooling” water used in power plants and boilers.

Chlorine Production and the Mercury Cell Process
(taken directly from November 21, 1994 C&EN)

The mercury process is one of three electrolytic systems that convert sodium chloride in brine into chlorine and sodium hydroxide, which is referred to as caustic soda. In the US, about 75% of chlorine is made in diaphragm cells, 13% in mercury cells, and 11% in ion-exchange membrane cells. The remainder is formed as a by-product of other chemical reactions.

In mercury cells, liquid mercury forms the cathode, gathering sodium ions from brine to form a mercury-sodium amalgam. Chlorine gas is released at the anode. The amalgam, when transferred to a “decomposer” and reacted with water, produces sodium hydroxide solution, hydrogen gas, and mercury, which is returned to the electrolytic cell.

As US chlorine production is consolidated, small mercury-based plants are the most likely to close. In Europe, most chlorine production is based on mercury cells, but the European Union plans to phase out their use by 2010. And Japan already has replaced most mercury cells, says Roger E. Shamel, president of consulting Resources Corp., Lexington, Mass., because of incidents of mercury poisoning.

Diaphragm cells produce chlorine, hydrogen gas, and sodium hydroxide solution in one cell, with no mercury involved. Brine flows into an anode compartment, which is separated from the cathode by a diaphragm. Chlorine forms at the anode, and the sodium ions and dilute brine traverse the diaphragm. Hydrogen is released at the cathode, and the sodium hydroxide-salt solution is removed. The effluent is concentrated by evaporation, and salt precipitates.

Ion-exchange membrane cells, the newest method, allow nearly one-step chlor-alkali production. As in the diaphragm cells, brine flows into the anode compartment, where chlorine is formed. But the membranes selectively allow only the sodium ions to pass into a water-filled cathode compartment. The cathode solution is removed from the cell and concentrated.

The Chlorine Institute, the trade association of chlor-alkali manufacturers, has recently supported an initiative set forth by the Virtual Elimination Project to reduce mercury emissions from mercury-cell chlor-alkali manufacturing by 50% by the year 2005. The Institute has also supported a 50% reduction in the deliberate use of mercury (purchases or consumption) in chlor-alkali manufacturing by 2005.

These significant commitments are an important step in reducing mercury emissions in the US. We applaud the efforts set forth by the Institute and support their voluntary actions of environmental leadership.

from a memo addressed to Ms. Elizabeth LaPlante of the USEPA from Robert Smerko, president of the Chlorine Institute, dated September 19, 1996.
The table below shows the estimated mercury concentration (ppb) in wastewater given the usage of caustic (in tons per day) and the average wastewater discharge (in gpm).

<table>
<thead>
<tr>
<th>Caustic Used (tons per day)</th>
<th>Wastewater Flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>0.017</td>
</tr>
<tr>
<td>2</td>
<td>0.033</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>20</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table from Vulcan Chemicals

REDUCTION WORKS!

Case Study: Potlatch Corporation - Tracking Down Mercury in Feedstock Chemicals

Potlatch Corporation is a pulp and paper manufacturing facility in Cloquet, Minnesota. The plant changed its bleaching process to Elemental Chlorine Free (ECF) in March, 1994, which required the introduction of new feedstock chemicals.

The facility discharges into the Western Lake Superior Sanitary District, which recently imposed a local limit for mercury. Prior to the development of this limit, the company and the District were aware that Potlatch effluent was typically low in mercury, but occasional peaks were of concern to both parties. The two facilities began an examination of possible mercury sources in feedstock chemicals.

Caustic soda feedstock was tested and eliminated because the company was no longer using mercury grade caustic soda. However, the testing of sulfuric acid revealed that some shipments had low mercury levels, while other shipments were higher. The use of high mercury sulfuric acid correlated with the mercury peaks in Potlatch effluent. Further investigation revealed that the low and high mercury sulfuric acids were from different manufacturing processes. The company then took the step of informing suppliers that the company had to be assured of low mercury content on all its feedstock chemicals.

"Worst Month" vs. "Best Month" reductions were about 7.5 pounds of mercury for this facility!

(From "Mercury Reduction Through Treatment Chemical Selection," a handout for the Lake Superior basin Energy Efficiency Workgroup Meeting, 2/27/96)
Carri Lohse-Hanson at the Minnesota Pollution Control agency has undertaken a project of “Mercury Reduction Through Treatment Chemical Selection.” She has researched mercury levels in caustic soda (see chart below) and has also found that other feedstock chemicals may have high levels of mercury. For example, sulfuric acid produced at a lead smelter was found to have significantly higher levels of mercury than sulfuric acid made from a copper smelter.

The Mercury Reduction Through Treatment Chemical Selection project will collect information on sources and characteristics of feedstock chemicals, including the prices of various grades, and will identify likely users of these materials. The second phase of the project will distribute information and request switching to low mercury feedstocks.

The following table from the Minnesota Pollution Control Agency provides preliminary information on characteristics of different grades of caustic soda:

<table>
<thead>
<tr>
<th>Properties*</th>
<th>Mercury Cell</th>
<th>Membrane Cell</th>
<th>Rayon Grade</th>
<th>Diaphragm Grade</th>
<th>Purified</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>sodium chloride</td>
<td>400 ppm</td>
<td>100 ppm</td>
<td>100 ppm</td>
<td>11000 ppm</td>
<td>300 ppm</td>
</tr>
<tr>
<td>sodium chlorate</td>
<td>3 ppm</td>
<td>5 ppm</td>
<td>3 ppm</td>
<td>3000 ppm</td>
<td>10 ppm</td>
</tr>
<tr>
<td>sodium carbonate</td>
<td>1000 ppm</td>
<td>1000 ppm</td>
<td>1000 ppm</td>
<td>2000 ppm</td>
<td>1000 ppm</td>
</tr>
<tr>
<td>sodium sulfate</td>
<td>100 ppm</td>
<td>250 ppm</td>
<td>250 ppm</td>
<td>500 ppm</td>
<td>500 ppm</td>
</tr>
<tr>
<td>iron</td>
<td>3 ppm</td>
<td>3 ppm</td>
<td>3 ppm</td>
<td>10 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>nickel</td>
<td>--</td>
<td>0.3 ppm</td>
<td>0.3 ppm</td>
<td>3 ppm</td>
<td>4 ppm</td>
</tr>
<tr>
<td>copper</td>
<td>--</td>
<td>0.3 ppm</td>
<td>0.3 ppm</td>
<td>0.2 ppm</td>
<td>0.2 ppm</td>
</tr>
<tr>
<td>mercury</td>
<td>0.25 ppm</td>
<td>0.001 ppm</td>
<td>0.2 ppm</td>
<td>0.001 ppm</td>
<td>--</td>
</tr>
<tr>
<td>heavy metals</td>
<td>1.5 ppm</td>
<td>5 ppm</td>
<td>15 ppm</td>
<td>10 ppm</td>
<td>10 ppm</td>
</tr>
<tr>
<td>silica</td>
<td>17 ppm</td>
<td>10 ppm</td>
<td>15 ppm</td>
<td>50 ppm</td>
<td>80 ppm</td>
</tr>
</tbody>
</table>

* Maximum values

Information from The Minnesota Pollution Control Agency
Because mercury is present in many rocks and ores, several industrial processes release mercury:

- **Carbon Black Production**
 Mercury is present in oil feedstock

 No facilities in Wisconsin

- **Chlor-Alkali Production**
 The mercury cell process converts sodium chloride in brine to into chlorine and sodium hydroxide, which is referred to as caustic soda. In mercury cells, liquid mercury forms the cathode, gathering sodium ions from brine to form a mercury-sodium amalgam. Chlorine gas is released at the anode. The amalgam, when transferred to a “decomposer” and reacted with water, produces sodium hydroxide solution, hydrogen gas, and mercury, which is returned to the electrolytic cell.

 There is one chlor-alkali facility in Wisconsin; estimated yearly emissions: 1,141 lbs/year.

- **Petroleum Refining**
 Mercury present in petroleum crude

 One petroleum refinery in Wisconsin; emissions probably below 18 pounds/year.

- **Lime Manufacturing**
 Mercury is present as impurity in processed stone and from fuel used to heat kilns.

 Estimated Wisconsin emissions from lime production: 118 pounds per year (high degree of uncertainty with this estimate).

- **Portland Cement Manufacturing**
 Mercury present in ore and minerals used as raw materials; mercury in fossil fuels used in cement kilns

- **Phosphate-based Fertilizer Factories**
 Mercury is a trace element in rock phosphate

- **Primary Smelting and Refining of Nonferrous Metals, except Copper and Aluminum**
 Mercury is present in almost all minerals; lead recovered from sulfide ore contains mercury; therefore smelting process generates mercury emissions

- **Primary Smelting and Refining of Copper**
 Copper recovered from sulfide ore contains mercury

- **Coke Production**
 Mercury is a by-product present in coal used as feedstock for coke oven batteries (primary feedstock for iron and coal industry)

 No facilities in Wisconsin

- **Industrial Boilers**
 Mercury present in coal, oil, natural gas, or wood used in electric steam generating units. Mercury is emitted as trace contaminant when volatilized at high temperatures.

 Another potential source of mercury related to boilers is “cooling water” used to treat water used in power plants or boilers. This water is often treated with pH-altering chemicals, such as caustic soda and sulfuric acid. If the caustic soda was made with a mercury cell process, there may be high levels of mercury in their wastewater.

Wisconsin Commercial/Industrial Emission Estimates:

<table>
<thead>
<tr>
<th>Category</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Combustion:</td>
<td>382 lbs/yr</td>
</tr>
<tr>
<td>Wood Combustion:</td>
<td>11 lbs/yr</td>
</tr>
<tr>
<td>Oil Combustion:</td>
<td>200 lbs/yr</td>
</tr>
</tbody>
</table>
5 INTENTIONAL INTRODUCTION INTO THE MANUFACTURING PROCESS

◆ Battery Production or Recycling
Used as an anode, as a component of the cathode, or to inhibit side reactions or corrosion.

◆ Copper Foil Production or Recycling
The high quality copper foil that is used as a laminate in printed circuit boards is produced using elemental mercury, which functions in electrical contact.

◆ Dental Equipment Production or Recycling
Mercury used in dental amalgams

◆ Electrical Apparatus Manufacturing or Recycling
Electrical switches, thermal sensing instruments, etc.

◆ Florescent Lamp Production or Recycling
Elemental mercury used as a vapor inside the glass tube.

◆ Instrument Manufacturing or Recycling
Thermometers, gauges, etc.

◆ Paints, Coatings, Pigments Production

from Gilkeson:
Historically, mercury was used in the manufacture of red and orange pigments. One US automotive manufacturer has reportedly recently discontinued mercury as a color concentrate in plastic component manufacturing.

Mercury has also been used in combination with cadmium as a pigment in engineering plastics where high temperature stability is required. Reportedly the only remaining manufacturer is SLMC in France. Past uses of mercury as a pigment include: auto parts, vinyl, ABS, polycarbonate. Today’s cadmium sulfide based pigments are more stable.

◆ Catalysts
Mercury is used as a catalyst primarily in the production of urethane and vinyl.

✓ production of vinyl from acetylene??

✓ acetylene (probably no longer used)

✓ anthraquinone production (no further or confirming information at this time)

✓ monomer production

✓ polymer curing
Case Study:
Ciba-Geigy Eliminates Mercury from its Toms River, NJ Plant

At the Toms River plant, mercury is used in the manufacture of anthraquinone (AQ) dyes, commonly used for dyeing cotton. AQ is sent through a number of intermediate stages to produce aminoanthraquinone. A sulfonation reaction during this process requires the use of mercury as a catalyst, thus mercury wastes are produced. Ciba-Geigy's corporate research group in Switzerland developed a pathway for the production aminoanthraquinone that avoided the sulfonation step, thus eliminating the need for mercury as a catalyst. The motivation for Ciba-Geigy to eliminate mercury from their process is the serious environmental problems that mercury produces.

The Toms River plant employs 1050 people and produces approximately 500 different products annually. The plant can produce 220,000 pounds per day of dyes and 105,000 pounds per day of epoxy resins. The plant's sales in 1979 were $90 million.

The Toms River plant eliminated the use of 2,280 lb/yr of mercury. The plant reduced mercury air emissions by 10 pounds per year, and also eliminated 58 lb/yr released to wastewater, 325 lb/yr of solid waste and 39,500 lb/yr of mercury contaminated material (from process filtering operation).

Industry/Program Contact
INFORM, Inc.
381 Park Avenue
New York, NY 10016
212/689-4040

Information found on EnviroSenSe P2 Commercial Case Studies Index
MERCURY SPILLS

It is essential to handle mercury and mercury-containing items safely. Small droplets of spilled mercury may lodge in cracks and sinks, mix with dust, accumulate on work surfaces, and adhere to knit fabrics, shoe soles, watches, gold, and other jewelry. This allows for mercury to potentially be transported to other locations, homes, or businesses.

The Costs of Mercury Spills

Mercury spills can be expensive for a number of reasons. Here are some examples:

The Cost of Clean-up

- A mercury-containing sphygmomanometer broken on a carpeted floor at Butterworth Hospital cost $2000 to clean up.

Labor costs

- It took Riverside Hospital 8 to 16 hours to clean up a mercury spill (the mercury had fallen in tile crevices).

Facility Down-Time

- The room in which a mercury spill occurs will be unavailable for use until the site is decontaminated. Riverside Hospital found that their room was out of service for at least one day.

Equipment Loss

- A mercury-containing switch in an oven in a University of Michigan Hospital cafeteria exploded. It cost $3500 to clean up the spill. The oven, a $25,000 piece of equipment, was irreparably damaged.

Training Time

- Continuing to use mercury containing items can be expensive for your facility because of the needed staff training for spill response plans. However, if you are still using mercury-containing products, don’t neglect this important step! An improperly handled spill can end up costing even more to decontaminate.

- From "The Case Against Mercury: Rx for Pollution Prevention," The Terrane Institute

Handle Mercury Safely!

- Use mercury only in uncarpeted, well-ventilated areas. Provide troughs on smooth surfaced tables and benches to collect mercury spills. Reserve the room for mercury use only; restrict traffic in the area.

- Ask workers to remove all watches and other jewelry - especially gold jewelry since mercury readily combines with gold - and have them wear a mercury vapor respirator and protective clothing: gloves, disposable gowns, and shoe coverings.

- Prohibit smoking, eating, and drinking in the area.

- Train all workers to understand the properties and hazards of mercury and to carry out safe handling procedures and specific policies related to mercury disposal.

- Clean and calibrate all mercury-containing equipment according to the manufacturer’s recommended handling procedures and the formal procedures posed by your communications or safety program supervisors.

- Ask your safety supply vendor for a mercury vacuum sweeper and spill cleanup kit. Having the right equipment on hand will limit the amount of mercury released into the atmosphere.
ACTION STEPS FOR INDUSTRIES TO CONSIDER

Product Substitution

✔ Contact each chemical supplier you use for material feedstock (e.g., caustic soda, sulfuric acid) and request a mercury analysis of the product or a certification that the product is mercury free.

✔ If you find a chemical solution that contains a significant amount of mercury, contact the supplier for an alternate material.

✔ Eliminate the use of mercury thermometers

✔ Eliminate the use of mercurochrome from first aid test kits.

✔ Check your quality control laboratory and eliminate any mercury containing chemicals.

✔ Replace mercury-containing compounds or reagents in your laboratories with mercury-free alternatives

✔ Substitute zinc air or silver oxide batteries for your mercuric oxide (mercury-zinc) batteries.

✔ Use safe, non-mercury cleaners and degreasers in labs, housekeeping departments, and maintenance areas.

✔ When remodeling or replacing old equipment, replace thermostats containing mercury switches with thermostats containing electronic type and snap switches, and replace “silent” light switches with mechanical light switches.

✔ Examine the use of mercury-containing switches in your facility. Consider replacing these switches when replacing old equipment or remodeling:

Tilt Switches
- “man down” alarms
- airflow/ fan limit controls
- fluid level control
- pneumatic tube communication systems
- pressure control
- safety shut off- limit switches for industrial machinery
- temperature control

✔ Purchase septic tank and sump pumps that contain magnetic dry reed switches, optic sensors, or mechanical switches instead of mercury tilt switches.

✔ Research your use of plunger or displacement relays; consider replacing these relays with mechanical switches.

Displacement/ Plunger Relays:
- industrial process controllers
- high currant/ voltage lighting
- power supply switching
- resistance heating
- tungsten lighting
- welding
- wetted reed relay/ wetted reed switch: test, calibration, measurement equipment
✔ Examine use of other mercury-containing products in your facility and consider the alternatives for these:
 - generators
 - high intensity lamps
 - manometers

✔ Purchasing departments need to know the cost of alternatives and the suppliers for the alternatives. They should consider disposal costs when evaluating a product; total product cost should include disposal costs and costs for cleaning up accidents.

✔ Consider the use of an Administrative Directive, either formal or informal, to end the purchase of mercury-containing products.

Loss prevention and housekeeping

✔ Label instruments containing mercury.

✔ Be sure workers are familiar with the laboratory’s policies on the proper disposal practices when working with mercury solutions in a laboratory.

✔ Follow proper procedures when cleaning or refilling instruments that contain mercury. Instrument cleaning or refilling should take place in a well ventilated area, and, if possible, over a tray to contain any spills.

✔ Establish effective spill response measures to ensure the mercury already in your facility is handled in a safe and proper manner. To minimize the risk of an accidental spill, never handle mercury over a sink. The educational program for spill prevention and cleanup should be visual and simple. You may want to consider a video.

✔ Clean or flush the traps, sumps, and pipes in your sewer lines to rid your facility of historical uses of mercury. See excerpts from the MWRA/MASCO Infrastructure Subcommittee Maintenance Guidebook that appear in the “Resources” section of this sourcebook for more information.

Recycling

✔ Establish a battery collection program.

✔ Continue to use fluorescent lamps! Even though fluorescent lamps contain mercury, they are a good choice because they use much less energy than regular bulbs. Consider the use of low-m fluorescent lamps; recycle your fluorescent lamps currently in use. Try not to break these lamps because some of the mercury will escape into the air.

✔ Recycle or dispose of mercury-containing products in your facility in an environmentally sound manner.
SAMPLE PROCLAMATION

Your facility may wish to formally declare your commitment to mercury reduction. You may use the proclamation below, or adapt it to suit your needs.

WHEREAS mercury is an elemental substance, that once released into the environment, easily and rapidly changes forms to several organic and inorganic states that transfer from soil to air to water and back again;

WHEREAS the organic form of mercury, methylmercury, bioaccumulates in aquatic ecosystems to magnify concentrations in animal tissue in increasing degrees up to 250,000 times;

WHEREAS methylmercury, the most toxic form of mercury, can affect the reproductive efforts of top predators in aquatic environments such as loons, otters, mink, and panthers;

WHEREAS the neurotoxic effects of high levels of methylmercury poisoning in humans has been established, and low-level doses of methylmercury consumption can potentially effect human health, especially that of a fetus;

WHEREAS elemental mercury is a highly toxic substance which can vaporize easily and cause both acute and chronic health effects including severe respiratory irritation and damage to the central nervous system;

WHEREAS mercury has been identified internationally as a toxic substance of concern, and mercury contamination has led to fish consumption advisories for more than 235 lakes and 350 miles of rivers in Wisconsin;

WHEREAS the majority of mercury entering Wisconsin comes from anthropogenic sources, and one-quarter of these emissions are the result of the purposeful use of mercury;

WHEREAS mercury is used widely in consumer and industrial products, where, in most cases, alternative, mercury-free products are available;

WHEREAS pollution prevention or product substitution is a progressive approach to protecting the environment that eliminates or minimizes the generation of mercury-bearing waste, making it one of the most favorable strategies for maintaining a clean environment;

WHEREAS pollution prevention for mercury can help environmental conditions, as well as protect the health and safety of workers;

WHEREAS recognizing mercury minimization as an active opportunity to improve the environment of Wisconsin and the environment of our business, we, the undersigned, do hereby declare our business to be a mercury minimization participant;
WE commit to research the following mercury minimization opportunities in our facility and implement those we find most feasible:

Product Substitution
- Research chemical solutions used for material feedstock. Use a low-mercury alternative if a mercury contamination is discovered.
- Eliminate the use of mercury thermometers
- Eliminate the use of mercurochrome from first aid test kits.
- Replace mercury-containing compounds or reagents in your laboratories with mercury-free alternatives.
- Substitute zinc air or silver oxide batteries for your mercuric oxide (mercury-zinc) batteries.
- Use safe, non-mercury cleaners and degreasers in labs, housekeeping departments, and maintenance areas.
- Examine the use of mercury-containing switches and consider replacing these any mercury-containing items with non-mercury alternatives when replacing old equipment or remodeling.
- Purchase septic tank and sump pumps that contain magnetic dry reed switches, optic sensors, or mechanical switches instead of mercury tilt switches.
- Research your use of plunger or displacement relays; consider replacing these relays with mechanical switches.
- Examine use of other mercury-containing products and consider the alternatives for these:
 - generators
 - high intensity lamps
 - manometers
- Consider the use of an Administrative Directive, either formal or informal, to end the purchase of mercury-containing products.

Loss prevention and housekeeping
- Label instruments containing mercury.
- Familiarize workers with the laboratory’s policies on the proper disposal practices when working with mercury solutions in a laboratory.
- Follow proper procedures when cleaning or refilling instruments that contain mercury.
- Establish effective spill response measures to ensure the mercury already in the facility is handled in a safe and proper manner.
Recycling

◆ Establish a battery collection program.

◆ Continue to use fluorescent lamps! Research the use of the new Alto™ bulb.

◆ Recycle or dispose of mercury-containing products in your facility in an environmentally sound manner.

--
Facility

--
Name Date Signed
BIBLIOGRAPHY

The information included in this pamphlet is essentially a compilation of the best mercury pollution prevention work to date. Information was gathered from the documents below; some material may have been quoted directly from these sources:

“Chlorine Industry Running Flat Out Despite Persistant Health Fears,” Bette Hileman, Janice R. Long, and Elisabeth Kirschner, C&EN, November 21, 1994

enviroSen$e P2 fact sheet - metal finishers in industry

“Hospital Mercury Work Group Operations Subcommittee Final Report,” Massachusetts Water Resources Authority (MWRA) and MASCO Mercury Work Group, August 21, 1995

“Managing Used Dry-Cell Batteries: A Household Hazardous Waste Fact Sheet,” MPCA

“Medical Waste Pollution Prevention: Keep Mercury Out of the Wastewater Stream,” USEPA Region 5, September 1995

“Mercury and the Use of Mercury Cell Caustic,” Vulcan Chemicals Technical Data Sheet, June 1995

“Mercury Elimination and Reduction,” Pollution Probe, 1997

“Mercury Reduction Through Treatment Chemical Selection,” Carri Lohse-Hanson, MPCA, February 27, 1996

“Mercury Sources and Regulations: Background for the Virtual Elimination Project,” Ross and Associates, September 12, 1994
"Mercury in Medical Waste," fact sheets 1-3, USEPA Region 5, September 1995

"Mercury in Minnesota Slide Show Script," Western Lake Superior Sanitary District, November 1995

"Mercury Pollution Prevention in the Health Care System," conference notes compiled by Emily Moore, MPCA, April 1996

"Mercury Products Study," John Gilkeson, Minnesota Pollution Control Agency, May 1996

"Mercury Pollution Prevention at a Bleached Kraft Pulp and Paper Mill," Kevin Kangas, Tim Tuominen, Dr. Dianne Dorland

"Mercury, Power Plants and the Environment: Basic Facts about Mercury and Coal-fired Power Plants, the Environment, Fish and Wildlife, and Human Health," compiled by Steven Ugoretz, WDNR

"Preventing Mercury Waste Generation Through Comprehensive Environmental Management within the Healthcare Industry," Steering Committee Meeting Summary Notes, April 1996

"Sources of Mercury in Healthcare Business," Detroit Water and Sewerage Department, July 1995

"Strategies for Mercury Control in Minnesota," MPCA Mercury Task Force, July 1994

"The Case Against Mercury: Rx for Pollution Prevention," The Terrane Institute

"Waste Household Battery Management in Wisconsin," SHWEC Waste Education Series

Current Mercury Work - Industry/Manufacturing

<table>
<thead>
<tr>
<th>Business Outreach/Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project: Lake Superior Partnership</td>
</tr>
<tr>
<td>Description: Multi-Media compliance and pollution prevention inspections in the Lake Superior Basin</td>
</tr>
<tr>
<td>Agencies working on this project: MPCA/OEA, WLSSD</td>
</tr>
</tbody>
</table>

| **Project:** Minnesota Very Small Quantity Generator Program |
| **Description:** Provide pollution prevention information for very small quantity hazardous waste generators in Minnesota |
| **Agencies working on this project:** MPCA/OEA |

| **Project:** RCRA Hazardous Waste Great Lakes Initiative |
| **Description:** Technical assistance and multimedia pollution prevention audits of hazardous waste generators in Lake Superior and Lake Michigan Basins |
| **Agencies working on this project:** WDNR |

| **Project:** Technical Assistance Audits for Municipalities and Industries |
| **Description:** Target industries to provide training on basic pollution prevention concepts; perform free, non-regulatory pollution prevention audits and demonstration projects |
| **Agencies working on this project:** MDEQ, SHWEC |

| **Project:** Mercury Audit Fact Sheet |
| **Description:** Mercury reduction audit fact sheet for manufacturing facilities |
| **Agencies working on this project:** SHWEC |