Fabric Printing Techniques
TEXTILE PRINTING

APPLICATION OF COLOR TO A FABRIC IN A DESIGN OR PATTERN

OBJECTIVES

1. GOOD REGISTRATION
2. GOOD CLARITY
3. GOOD DEFINITION
4. GOOD PENETRATION
5. GOOD FASTNESS
6. LOW PERCENTAGE SECONDS
TYPES OF PRINTING PROCESSES

I. AUTOMATIC FLAT SCREEN PRINTING

A. APPROXIMATELY 17% OF PRINTED GOODS

B. ADVANTAGES

(1) LARGE REPEATS

(2) MULTIPLE STROKES FOR PILE FABRICS

C. DISADVANTAGES

(1) SLOW

(2) NO CONTINUOUS PATTERNS
II. ROTARY SCREEN PRINTING

A. APPROXIMATELY 60% OF PRINTED GOODS

B. ADVANTAGES

(1) FAST

(2) QUICK CHANGEOVER OF PATTERNS

(3) CONTINUOUS PATTERNS

C. DISADVANTAGES

(1) DESIGN LIMITATIONS

(2) SMALL REPEATS
III. ENGRAVED ROLLER PRINTING

A. APPROXIMATELY 26% OF PRINTED GOODS

B. ADVANTAGES

(1) HIGH DESIGN CAPABILITY

A. FINE DETAIL

B. MULTIPLE TONES

C. DISADVANTAGES

(1) COPPER CYLINDERS VERY EXPENSIVE

(2) NOT ECONOMICAL FOR SHORT RUNS

(3) REQUIRES HIGHLY SKILLED WORKERS
IV. HEAT TRANSFER PRINTING

A. APPROXIMATELY 7% OF PRINTED GOODS

B. ADVANTAGES

(1) HIGH QUALITY PRINTS

(2) FEWER SECONDS

(3) ECONOMICAL FOR SHORT RUNS

(4) PRACTICALLY POLLUTION FREE

C. DISADVANTAGES

(1) SLOW

(2) PRIMARILY ONLY FOR POLYESTER
STEPS IN PRINTING PROCESS

1. PREPARATION OF PRINT PASTE

2. PRINTING OF FABRIC

3. DRYING

4. FIXATION OF DYESTUFF

5. WASHING-OFF
Preparation of printing type of specific formulation used depends on the type of printing pastes. The colorant system used and, to some extent, the fiber, the colloidal promoters used. Adhesive promoters, water-retaining agents (humectants), dispersing agents - surfactants, sequesterants, thickeners, cross-linking agents, binders, cross-linking agents. Dyes or pigments, hand modifiers, catalysts, defoamers, thickeners. Typical ingredients used include: type of printing machine.
Thickeners

Viscosity - the resistance of a fluid to flow - (ie. the thickness of the fluid)

- one of the most important variables in a print paste formulation

- can be controlled by choosing from a wide range of possible thickener products, modified by changes in temperature, pH, and electrolyte concentration

Thickener systems -

Natural gums

Synthetic polymers

Emulsions - (oil-in-water, water-in-oil)

Foam
Dynamics of Print Pastes

Viscosity - Laminar flow (fluids)

Turbulent flow

Important factors for print paste;

Shear stress

Shear rate

Newtonian Fluids - those fluids which possess a constant viscosity over a broad shear rate (stress) range at a given temperature.

Non-Newtonian Fluids - those fluids which exhibit a changing viscosity with a changing shear rate (stress)

- Pseudoplastic
- Plastic
- Thixotropic

Effect of Electrolytes

Effect of Concentration
THICKENING AGENTS

MUST HAVE PSEUDOPLASTIC FLOW BEHAVIOR

LOW SHEAR = HIGH VISCOSITY
HIGH SHEAR = LOW VISCOSITY

\[\text{Viscosity} \quad \text{Shear Rate} \]

PSEUDOPLASTIC BEHAVIOR
THICKENING MEDIA

Solutions of Polysaccharides
- Gum Arabic
- Gum Tragacanth
- Locust Bean Gum
- Guar Gum
- Sodium Alginate

Emulsions
- Oil-in-Water
- Water-in-Oil
 Oil is usually Varsol

Synthetic (All-Aqueous)
- Polyacrylic Acid
- EMA Resing
 Electrolyte Sensitive

Foams
- Air dispersed in water
Binders

A product of high molecular weight which is capable of forming a three-dimensional film used to hold the pigment particles in place on the surface of a textile substrate

- not necessary when using dyes
- very important in determining fastness properties

Normally synthetic (latex) compounds

Acrylics

Vinyl Acetates

Butadienes

Self-crosslinking agents

Methylolacrylamide

Methylolmethacrylamide
Sequestering Agents

These are compounds which react with metallic ions in such a way that the metal becomes part of a complex

EDTA - most popular to use with dyes

Calgon - often used to soften water
Dispersing agents

Surfactants - used to disperse solid particles, promote paste stability, and increase paste penetration into the fiber.

Similar in use are protective colloids - increasing paste stability.

Surfactants can be

- Anionic \(S^- \) (acidic)
- Cationic \(S^+ \) (basic)
- Nonionic \(S \) (neutral)
Humectants

Materials added to print paste formulations to prevent water evaporation from the paste - preventing "skin-over" and paste instability.

Typical Humectants

- Ammonia
- Triethanolamine
- Polyalcohols
- Ethylene glycol
- Glycerine
- Urea
Adhesion Promoters

Increase adhesion of binder system to substrate

i.e. Pigment printing of fiberglass is enhanced by using aminosilane
Defoamers

Added to print pastes to minimize formation of foam (before foam printing).

Often silicone surfactants have been used — however any compound which decreases bubble formation in the print paste and exhibits no adverse effects can be used.

Hand Modifiers

Normally softeners — because binders tend to stiffen the fabric.
Catalysts

A chemical added to a formulation to increase the speed of a chemical reaction.

May be included in print paste formulation for the binder or for reactive, sulfur, or vat dyes.

May be acidic or basic.
AUXILIARY CHEMICALS

THOSE NECESSARY FOR FIXATION OF DYE ONTO FIBER

REACTIVES - ALKALI

VATS - REDUCING AGENT

ACIDS - ACID

CATIONIC - ACID

DISPERSE - CARRIER

DO NOT INCORPORATE STRONG ACID, BASES, OXIDIZING AND REDUCING AGENTS IN PRINT PASTE.

ACID AGER

LATENT REDUCING AGENTS
(SODIUM SULFOXYLATE FORMALDEHYDE)
SCREEN ENGRAVING PROCESS

1. PREPARATION OF POSITIVE FILM
 A. COLOR SEPARATION
 B. STEP AND REPEAT
 C. REGISTRATION AND ACCURACY

2. TRANSFER TO SCREEN
 A. LACQUER METHOD
 B. GALVANO METHOD
LACQUER METHOD

PERFORATED SCREEN PREFORMED

A. HEAT
B. DEGREASE AND CLEAN
C. COAT WITH LIGHT - SENSITIVE EMULSION
D. DRY
E. FILM PLACED IN CONTACT WITH SCREEN
F. EXPOSE TO LIGHT
G. WASH
H. INSPECT
I. CURE
J. INSTALL END RING
FLAT-BED SCREEN PRINTING

MECHANIZATION OF HAND SCREEN PROCESS

FABRIC GLUED TO BLANKET

SCREENS RISE AND FALL

PRINTING DONE WHILE SCREEN IN DOWN POSITION

ROD OR BLADE SQUEEGEE SYSTEM

UP TO FOUR STROKES POSSIBLE

SLOW PROCESS
FLAT BED PRINTING AND SQUEEGEE UNIT
ROTARY SCREEN PRINTING

CONTINUOUS SCREEN PRINTING PROCESS

FABRIC GLUED TO BLANKET

FABRIC MOVES UNDER ROTATING SCREENS

ROD OR BLADE SQUEEGEE SYSTEM

FINE ADJUSTMENTS EASILY MADE

SPEEDS UP TO 100 YD./MIN.
SQUEEZE E PRINICIPLE

ROTARY SCREEN PRINTING
1. Atmospheric Steam

- Treatment at 212 degrees F with saturated steam
- Used with
 - Direct Dyes
 - VAT Dyes
 - Naphthol Dyes
 - Acid Dyes
 - Cationic Dyes
 - Reactive Dyes

- Festoon Steamer Most Common Equipment

 Acid Ager for Acid Dyes

2. Pressure Steam

- Treatment at 230 degrees F under low pressure
- Used with Disperse Dyes
- Turbo-Autoclave Most Common Equipment
3. **High Temperature Steam**

- Treatment with Superheated Steam at Temperature up to 420 degrees F

- Used with
 - Disperse Dyes
 - Pigments

- Can also be used as an Atmospheric Steamer

4. **Dry Heat**

- Treatment with Dry Heat at Temperatures up to 420 degrees

- Used with
 - Disperse Dyes
 - Reactive Dyes
 - Pigments
REASONS FOR SCOURING

REMOVE THE THICKENING AGENT

REMOVE AUXILIARIES

REMOVE EXCESS DYESTUFF

IMPROVE BRILLIANCE OF PRINT

IMPROVE FASTNESS PROPERTIES OF PRINT

PROBLEM-

BACK STAINING OF UNDYED AREAS
PIGMENT PRINTING

70% OF ALL PRINTED FABRICS IN U.S. ARE PRINTED WITH PIGMENTS

Composition of Print Paste

Pigment
Thickener (Emulsion or All Aqueous)
Binder (Acrylic Polymer)
Low Crock Binder
Softener

Process
1. Print
2. Dry
3. Care

Advantages
- All Fibers and Fiber Blends
- No Afterwash

Disadvantages
- Poor Crock Fasteness
- Harsh Hard
Typical Pigment Print Formulation

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>% Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment</td>
<td>10%</td>
</tr>
<tr>
<td>Dispersing Agent</td>
<td>3%</td>
</tr>
<tr>
<td>Soap and/or Oleic acid/Ammonia</td>
<td>2%</td>
</tr>
<tr>
<td>Defoamer</td>
<td>1/10%</td>
</tr>
<tr>
<td>Latex (Binder)</td>
<td>5-10%</td>
</tr>
<tr>
<td>Casein</td>
<td>1%</td>
</tr>
<tr>
<td>Bacteriocide</td>
<td>1/10%</td>
</tr>
<tr>
<td>Carbopol</td>
<td>1/2%</td>
</tr>
<tr>
<td>Solvent</td>
<td>2%</td>
</tr>
<tr>
<td>Water</td>
<td>77%</td>
</tr>
</tbody>
</table>
DEFECTS IN SCREEN PRINTING

OUT OF REGISTRATION

LINT AND THREAD MARKS

GLUE STREAK

COLOR SMEAR

COLOR OUT

CREASED FABRIC

PINHOLE

DAMAGED SCREEN
DIAGRAMMATIC VIEW OF A ROLLER-PRINTING SYSTEM
RESIST PRINTING

Fabric is first printed with a resisting agent, then dyed.

Produces similar effects to discharge printing.

Can use white or colored resists.

Can use dyes of much higher stability than those used in discharge printing and, therefore, much higher fastness can be obtained.
Discharge printing is a method where a "dyed" fabric is printed with discharging agents which selectively destroy the dye. A white discharge is produced.

An alternative method is to print along with discharging agents, nondischargeable dye which gives a colored discharge surrounded by a "ground" color.

Advantages

1) Large areas of ground color possible

2) Delicate colors and intricate patterns possible on deep ground color – excellent depth and clarity possible

3) Higher production costs but long lasting, unique styles
HEAT TRANSFER PRINTING

Advantages

1. Easier handling of units
2. Easier training of operators
3. Better registration and clarity
4. Fewer Seconds (2% vs. 10%)
5. Inventory in paper
6. Pollution - free

Disadvantages

1. Slow
2. Limited to synthetic fibers
 mainly polyester
HEAT TRANSFER PRINTING UNIT

- PRINTED FABRIC
- AIR COOLER
- HEATING ROLLER
- BACKING PAPER (8 in. [203 mm], Max. Dia.)
- FABRIC SUPPLY (20 in. [508 mm], Max. Dia.)
- DiscardedPrintPaper
- MOTOR & GEARBOX

48 in. (1220 mm) High
PRESENT USES OF HEAT TRANSFER PRINTS

Knitted Apparel
Woven Apparel
Drapery Fabric
Upholstery Fabric
Automobile Interiors
Carpet Tiles
RECENT INNOVATIONS IN HEAT TRANSFER PRINTING

Deep Penetrating Dyes for Pile Fabrics

Cationic Dyes for Printing Acrylics

Processes for Printing Polyester/Cotton Blends

2. Resin Fixing Dyes on Cotton.

Wet Heat Transfer Printing