Editorial

Since the last issue of FOCUS The Solid and Hazardous Waste Management Branch has become separated from the Environmental Health Section and became a new Section in the Division of Health Services. The reorganization was effective January 1, 1988.

The Solid Waste Management Section will continue all the existing Branch programs. Branch Head Bill Meyer will be the new Section's Chief. The Assistant Section Chief is Paul Crissman, formerly a budget analyst in the Department of Human Resources.

The Section will continue to enforce all regulations that deal with the collection, source separation, storage, transportation, processing, treatment, resource recovery, Waste Minimization and disposal of solid and hazardous waste in North Carolina, in addition to managing programs dealing with Small Quantity Generators, waste oils, Superfund and the Inactive Sites Program.

Another area of interest concerns used oil. EPA Assistant Administrator for Solid Waste and Emergency Response J. Winston Porter reportedly has concurred with Staff recommendations to regulate used oil under the Resource Conservation and Recovery Act rather than under the Toxic Substances Control Act.

EPA in November 1986 determined that used oil for recycling is not a hazardous waste - the EPA decision is currently being debated in court - but the agency has yet to decide whether used oil being disposed should be listed as a hazardous waste. Several articles in previous issues of FOCUS address the regulations concerning used oil being recycled.
North Carolina Used Oil Meeting

On February 23, 1988, the Technical Assistance/Support Unit along with the Governor's Waste Management Board and North Carolina County Commissioners Association, sponsored a "Used Oil Collection Meeting." Representatives from 37 counties and other interested organizations were in attendance.

The purpose of the meeting was to encourage local governments to implement a used oil collection program for homeowners who change their oil (do-it-yourselfers or DIY's). Due to the lack of convenient and available sound environmental disposal alternatives much of this oil ends up being disposed of in sanitary landfills, sewers, storm drains and on the ground. Used oil generated by DIY's should be collected and added to the recycling system that already exists (i.e., burned for energy recovery).

Implementation of successful DIY collection programs will depend on local support, sponsorship, education, technical and financial assistance. These topics and others were discussed during the meeting.

Based on the comments of the attendees, they are concerned about the DIY dilemma and appear supportive of some type of collection program.

STATE OF NORTH CAROLINA
James G. Martin
Governor

DEPARTMENT OF HUMAN RESOURCES
David Flaherty
Secretary
Hazardous Waste Management Branch
William L. Meyer
Head
Technical Assistance Unit
(919) 733-2178

Personnel Responsibility

William Paige Supervisor
Elsie Bollech Secretary
Judith Lund Small Quantity Generators
Margaret Babb Generators/Waste Reviews
Bill Pitchford Waste Minimization
James Edwards Data Management
Steve Reid Editorial Consultant

PESTICIDE DISPOSAL ASSISTANCE PROGRAM

by Margaret Babb & Dr. Bill McClelland
N.C. Department of Agriculture

Designed primarily for farmers and homeowners, the Pesticide Disposal Assistance Program in the Department of Agriculture offers free pickup and disposal of most pesticides. Under some conditions this free assistance is offered to institutions such as schools or hospitals. Technical assistance and information are available to commercial users such as dealers and applicators who must utilize commercial hazardous waste transportation and disposal service.

Since many pesticides are classified as hazardous wastes under RCRA, they must be manifest and handled as hazardous waste. The Department of Agriculture has assisted the public in the proper disposal of pesticides and provided for centralized pickup and disposal services since 1980.

Expansion of the Pesticide Disposal Assistance Program began with the appropriation of approximately $250,000 for the 1987-89 biennium by the 1987 Session of the General Assembly. However, the program will be looking for additional sources of revenue in the future in order to deal adequately with the backlog of pesticides to be destroyed and in order to meet increasingly stringent disposal requirements.

Incineration is the preferred destruction method. However, all pesticides currently are not amenable to incineration. If possible it is recommended that all pesticides not banned be used up, the container triple rinsed (to meet RCRA's definition of empty) and the rinsate used to properly dilute the pesticide.
Requirements

In order for a pesticide to be collected it must be contained in structurally sound commercial containers with the identifying commercial labels. If the waste pesticide container does not meet requirements, the NCDA will provide technical assistance to the owner, where possible. Currently unidentified products can not be accepted for disposal.

An inventory of individuals who have 2,4,5-T and Silvex is being taken. No permitted disposal site currently accepts these pesticides. When EPA designates a site, these owners who have already requested assistance will be contacted to arrange for pickup and disposal.

Fumigants are more dangerous to store and transport due to their volatility. With one exception all fumigants can be used for their intended purpose. The NCDA will not accept fumigants for disposal except for ethylene dibromide which now has only very limited legal use.

CONTACT

To obtain assistance, call Dr. Bill McClelland at (919) 733-7366. Arrangements will be made for one of 10 regional inspectors to contact you and, if the pesticides meet the stated requirements, it will be picked up for disposal immediately. If the requirements are not met, the inspector will advise the owner as to the necessary corrective measures.

REGULATIONS AFFECTING
THE USE OF MOBILE TREATMENT UNIT'S

by

Bill Pitchford

The "1986 North Carolina Hazardous Waste Minimization Report" states that a main reason hazardous waste generators seek to improve their waste minimization programs is to reduce costs. Another reported reason is response to increased regulatory pressure. Bearing this in mind, it is important when evaluating alternative waste minimization strategies to determine how a strategy affects the regulatory burden of the company. One should compare the potential cost savings of an option with the appropriate regulatory changes thereby, implementing the strategy that produces the most cost savings combined with the least new regulatory requirements. An example of a strategy to improve a waste minimization program is the use of a "Mobile Treatment Unit" (MTU). This article describes the regulations affecting the use of such units.

MTU's are defined as "any device or equipment, or combination of devices or equipment, that treats hazardous waste and that is designed to be transported and operated at more than one site." Examples of MTU's include dewatering equipment, incinerators, and distillation equipment. However, treatment of a hazardous waste requires a RCRA permit. Treatment is defined by 40 CFR as "any method, technique, or process, including neutralization, designed to change the physical, chemical, or biological character or composition of any hazardous waste so as to neutralize it, or render it non-hazardous or less hazardous, or to recover it, make it safer to transport, store, dispose of, amenable for recovery, storage or volume reduction." The use of an MTU meets this definition of treatment and a permit is currently required at each site where these units operate.
The requirement of a permit has caused a great deal of concern and controversy within the MTU industry and with state regulators. This is primarily a result of the cost associated with obtaining a RCRA treatment permit and the time required to obtain one. The fact is many companies offering mobile treatment services have continued to treat hazardous waste either because they are not aware of the regulations or due to a lack of uniform enforcement by regulators. TASU has received several requests for interpretation of these regulations, mostly in the use of mobile sludge dewatering and drying equipment.

Volume reduction (dewatering) is clearly defined in the above definition as treatment. However, there are many examples of North Carolina companies that use a filter press and/or sludge dryer to dewater hazardous waste sludges. None of these units are currently permitted as RCRA treatment facilities due to the exemption allowed under 40 CFR 264.1. This section exempts the treatment of wastes managed in a wastewater treatment unit regulated under section 402 of the Clean Water Act provided these discharges are subject to an NPDES permit or to the pretreatment standards of a local POTW (Publicly Owned Treatment Works).

A wastewater treatment unit is defined in 40 CFR 260.10-(139)-(b) and (c) as a device that "receives and treats or stores an influent wastewater which is a hazardous waste as defined in 40 CFR 261.3; and meets the definition of a tank, 40 CFR 260.10." Typically, the dewatering equipment is considered part of the wastewater treatment unit.

A portable sludge dryer could be considered exempt from RCRA when it is used as a part of a permitted wastewater treatment unit. However, a RCRA treatment permit is required when dewatering is performed outside of the permitted wastewater treatment unit. For example, sludges removed from a wastewater treatment system and stored in drums or surfaces impoundments and subsequently dewatered would require a RCRA permit since the dryer would not be an integral part of a wastewater treatment unit.

EPA has proposed new regulations regarding MTU's in the Federal Register dated June 3, 1987. These regulations are intended to ease the requirements of MTU's wishing to perform on-site treatment by allowing a simplified permit. These regulations are scheduled to be finalized soon and will be announced in an upcoming "FOCUS". Hopefully, these new regulations will provide clear guidance on the use of Mobile Treatment Units.

CONVERTING WASTE OIL TO HEAT

by

Joseph Pots
Eu Gen Company

What began as a routine call to remove 550 gallons of waste oil from the High Point Transit vehicle maintenance facility resulted in the purchase of a furnace that not only heats our entire maintenance facility but also eliminated our waste oil disposal problem.
In the spring of 1987 I was advised by our maintenance director that our waste motor oil reservoir was full. We contacted the oil company who had been purchasing waste oil from us for years. A representative of that company told us they were no longer in the waste oil business because of increased environmental regulations and liability involved with handling it. We also were advised that no one in the High Point area could legitimately remove the oil for us. After several calls I was able to locate an approved firm who could remove the oil for $0.10 per gallon. We had previously been paid as much as $0.25 per gallon for the oil.

With the prospect of waste oil removal prices continuing to rise (one waste oil producer has since advised me he has had to pay $.69 per gallon for removal) we began to look for a long-term solution to the problem.

In previous years there have been waste oil burning apparatuses on the market such as "smudge pots" which required extensive maintenance, produced large amounts of smoke, and produced little heat. There was little initiative on the manufacturers part to produce an efficient unit with such little demand for an oil burner because of the easy removal of waste oil and the increasing cost of removal, several heating unit manufacturers began to develop an efficient unit. More recently an efficient unit had been produced to burn #5 fuel oil which has a very similar viscosity to that of waste motor oil. Logically, a unit should be available that is capable of burning waste motor oil.

Upon reviewing available data on several units we found one that was similar in operation to many standard fuel oil burning units presently used in heating many institutions. We then calculated the number of gallons of waste oil produced by our facility and the number of BTU's needed to heat our facility and then selected a unit which best fit our needs.

The unit selected was a Clean Burn multi-oil furnace Model CB-86-BH, distributed by the Eu Gen Co. in Harrisonburg, Va. The unit is rated to produce from 150,000 to 250,000 BTUH and will consume 1.33 to 2.0 gallons of fuel per hour, depending on air and fuel setting. Little maintenance is required and most replacement parts may be purchased locally. Installation was performed inhouse with technical information supplied by the company's field representative.

The unit meets the North Carolina building code requirements and has been approved by the North Carolina Building Code Council. Further, we have had no problems meeting local codes during installation.

As of mid-winter the unit has operated exceptionally well supplying heat to our entire maintenance facility. However, it is anticipated we will not have an ample supply of waste oil for the winter because we had the waste oil tank pumped and cleaned in preparation for installing the unit. We are presently burning all used motor oil, transmission fluid and differential greases in the unit.

Cost of the unit including installation was $4,000. Payback on the investment is calculated at three years. This figure does not include the cost of removing the initial volume of waste oil or liability associated with handling the product. A complete cost comparison will be made at the end of the heating season.

In conclusion, High Point Transit was able to turn a potentially troublesome situation into a unique, clean and efficient way of heating our maintenance facility. If you desire more information about the process, please call me at (919) 889-7433 or Mr. Joseph Potz of Eu Gen Co. at (703) 434-7712.
Waste minimization is a major concern for all CCA (chromated copper arsenate) wood treaters in North Carolina. According to wood treater Buddy Perry the industries efforts are geared toward reducing costs, staying in compliance, reducing liability, and being a better neighbor. As an operator of a CCA wood treatment plant, Mr. Perry had the following suggestions to help other CCA treaters meet these goals.

"All CCA wood treatment plant operators should be aware of the federal and state regulations that affect our business. One way to become informed is to join trade associations, such as the Society of American Wood Preservers. This association keeps members current on federal rules and any new regulations concerning the industry. A second way is to attend the small quantity generator workshops developed and presented by North Carolina State University Industrial Extension Service. These informative workshops cover hazardous waste management and encourage the participants to discuss their ideas on waste minimization. A third way is to have the Technical Assistance Unit of the Solid and Hazardous Waste Management Branch visit your facility. They can offer assistance in both managing hazardous waste and in reducing waste by-products. A fourth way is to seek the services of a private company that handles hazardous waste. Such a firm can keep you current on the regulations affecting our industry, help you properly dispose of your hazardous waste, and also conduct an audit of your operations offering suggestions for reducing waste generation."

There are several simple measures a wood treater can implement to reduce wastes. The lumber cart can be designed with one side elevated to increase run-off or drippage back into the system. The final treatment vacuum can also be increased which insures less drippage off the lumber as it comes out of the cylinder. Good housekeeping practices are also important and can help minimize hazardous waste. For example, the wood treater should vacuum out the door during each charge. This allows the solution to remain in process. One fork lift should be designated for the drip pad area to eliminate contamination to other areas of the plant. Also, it is a good practice to sweep and hose down the drip pad weekly. The rinse water can be recycled to the system.

A common source of hazardous wastes in CCA wood treatment is drippage. According to mast treaters there always will be some drippage even after implementing measures to reduce it. Currently large amounts of clay material are used as an absorbent thus resulting in an increased volume of hazardous waste for off site shipment. One way to reduce this waste is to change the type of absorbent material used. Clay absorbents have limited ability to absorb liquid when compared to other available absorbents. As disposal costs continue to increase, it pays to use one drum of an effective absorbent, such as tubular absorbent socks, rather than eight drums or more of an inefficient material, like loose clay, to do the job.

Absorbent socks are available in different types to meet specific requirements. Absorbent socks also lend themselves to recycling, incineration or burned for energy recovery. Absorbent socks also contribute to better housekeeping when used to contain leakage as opposed to leakage contained by clay material.

Most CCA wood treaters in North Carolina classify as small quantity hazardous waste generators. Each wood treater should accept the responsibility of properly handling and disposing of his waste. Waste minimization is a part of this responsibility.
Recycling of Plating Solutions
by
Bill Pitchford

One of the largest industries in North Carolina is the metal finishing industry. This industry generates large amounts of hazardous waste in the form of spent plating baths and sludges from the treatment of plating rinse water. In the past, the disposal costs of these materials was low and little incentive existed to minimize the amounts generated. However, with both increasing regulatory pressures and disposal costs, there has been significant effort put forth by electroplaters to reduce their wastes.

Many of the techniques instituted have been simple measures, most of which involve water conservation and reuse. Countercurrent rinsing, drain boards between rinse tanks and longer drip times are just a few techniques resulting in lower water treatment costs. Additional savings can also be realized by recycling rinse water back to the original plating tank.

A western North Carolina company has used water recycling to decrease overall treatment costs. Previously, all plating rinse water was discharged directly to a nearby stream through a series of treatment lagoons, but in order to comply with NPDES permitting requirements and more stringent hazardous waste laws for treatment lagoons, pretreatment of the rinse water was necessary. Recycling water helps to cut pretreatment costs.

The water recycling system involves the use of an evaporator to concentrate rinse water for return to the plating tanks. Once a part is removed from the plating bath it proceeds to a rinse tank where the excess plating solution is removed. The contaminated rinsed water is pumped to a holding tank for heating to initiate evaporation. The heated water is sprayed into the evaporator across a series of coils to allow more water to evaporate. The concentrated solution leaving the evaporator returns to the holding tank. The concentrated solution present in the holding tank is then used to replenish the original plating tanks. This recycling is possible since the plating tanks are heated and significant evaporation occurs.

Since the company has used the system for only a short time, complete data does not exist on cost benefit. However, savings occur both in pretreatment costs of contaminated rinse water and in raw material usage. More fine tuning must be done in order to fully utilize the advantages of the system.

Another key factor in the success of this system is that all operators use it effectively. Company officials noted that even though the cost savings of the system were apparent, the plating line operators were hesitant to the change from established methods. This is an example of why operator training programs should include information on the advantages/disadvantages of any waste minimization efforts.
Our last issue focused on the review of information furnished by the company, and the plant tour. This article places emphasis on all waste streams identified and subsequent evaluation as to proper treatment/disposal.

The audit review team identifies on the process flow diagram the location of hazardous waste generation confirmed by the tour. Comments by those employees closest to the process are considered. Costs and technical feasibility to implement all suggestions are weighed against other pertinent factors. Evaluated also are ideas to eliminate or minimize a waste stream. Could a change of material or a process change result in reduced hazardous waste and thus costs?

The audit review team identifies that a solid and hazardous waste (i.e., subject to RCRA) determination has been made on all applicable waste streams. Are all waste streams coded properly? Are there other hazardous waste not identified as such? A guide to lead you through a hazardous waste determination is available from the Technical Assistance/Support Unit.

Of the hazardous waste, the waste that is acutely hazardous is identified and quantified. Acutely hazardous wastes include the dioxins, F020-F023, F026-F028, and the "P" wastes in section 261.33 of the Hazardous Waste Management Rules. Special regulations govern these acutely hazardous wastes. For example, the generation of one kilogram (1 kg) or 2.2 pounds of an acutely hazardous waste in one month qualifies a company as a generator. Only one quart of acutely hazardous waste may be accumulated in a satellite storage area.

Mixture of any waste streams is discouraged. Increased cost of disposal can result. For example, hazardous waste mixed in oil can make the oil subject to hazardous waste regulations. Mixture of a chlorinated solvent into a non-chlorinated solvent may result in higher costs of disposal.

The audit team should check the operational procedures at the point wastes are measured and labeled. Noted are the condition of all process equipment including tanks, pumps, pipes, valves, etc. All areas are examined for leaks or spills. Efforts to discover potential sources of leaks or spills are made and preventive measures initiated. Maintenance procedures and schedules are examined to determine the need for update.

Wastes are tracked from satellite storage areas to regular storage areas to on-site or off-site treatment or disposal. Are safe procedures followed in the movement of these wastes? Are emergency equipment or supplies handy to contain a serious accident?

Records of these waste streams are examined. For example the latest RCRA annual report is studied.

In a waste review, Waste Streams are identified, characterized and quantified. The costs of disposal of each waste stream are determined. All information on wastes is collected to make decisions which will result in the minimization of hazardous waste, proper disposal of all waste and lower costs of disposal.
Plastic Media Blasting - Alternative
To Chemical Stripping

by

Bill Pitchford

As frequent readers of "FOCUS" already know, many industries have altered their production processes in response to an increased awareness of the need for minimizing the quantities of hazardous waste generated. For example, the increased use of water conservation techniques such as counterflow rinsing and of new equipment such as filter presses have greatly reduced the amount of hazardous waste generated by the electroplating industry.

Another industry that is ripe for such improvement is the paint and coating stripping industry. Presently, most companies still rely on the use of chemical strippers to remove paint from aircraft, automobiles and boats before repainting. This usually involves the use of methylene chloride and other solvents which become hazardous waste disposal problems after use. This article documents one alternative to chemical stripping: the use of plastic media blasting.

Most people are familiar with the principles of abrasive cleaning. Basically, an abrasive material is propelled against a painted surface by a high pressure air stream thus removing the surface coating. The most common example of this is the use of sand to prepare buildings for repainting. Blasting with plastic media is very similar to sandblasting but the characteristics of the plastic media are better suited for high quality/high detail work.

The Naval Aviation Depot at Cherry Point, NC is one example of the advantages of plastic media blasting. According to Mr. Joe Freemon of the Depot, the use of plastic media blasting has dramatically reduced their reliance on chemical strippers. For example, prior to the use of plastic media, stripping a helicopter body required several drums of chemical stripper be applied to the helicopter body. The chemicals were allowed to work for a specific length of time, and then the resulting stripper/coating mixture was removed by a combination of water washing and operator scraping. The resulting rinse water was discharged to a wastewater treatment system. The entire paint stripping process often took as long as three days to complete.

Several disadvantages were seen with chemical stripping. These included the handling of chemical strippers by the operators, the time lag incurred while the chemicals were working, and the substantial treatment cost of the stripper/coating sludge. Also, the lack of availability of recycle potential for the stripper was another disadvantage since virgin stripper cost $300 per drum.

Plastic media blasting has eliminated many of these concerns. In the plastic media process, an operator, wearing a respirator mask, operates a plastic media blasting nozzle which applies the media to the item to be stripped. As the blast stream impacts the surface the coating is removed and falls to the floor along with the media.

After blasting a specific piece of equipment, the media/coating mixture is vacuumed back into the blasting machine where the coating flakes are separated from the plastic media by a cyclone separator. The dry coating flakes are collected for disposal while the plastic is recycled. Typically, the same plastic media may be reused 8 or 9 times. This ability to recycle the plastic media provides a substantial savings in raw material cost, plastic media costs approximately $2.00 per pound.
The operation also realizes a sizable reduction in treatment costs since plastic blasting produces a waste consisting of dry coating flakes and a small amount of plastic media. While exact figures are not available, the disposal costs of this material is considerably less than the costs incurred by the wastewater treatment plant in treating large quantities of rinse water contaminated with chemical stripping compounds and coating waste.

Another advantage of the new system is improved operator morale. The use of plastic media eliminates the unpleasant odors and handling involved with the use of chemical strippers. Plastic media also allows for significant time savings over chemical stripping. Mr. Freemon notes that a helicopter body which previously required three days to chemically strip now can be stripped in slightly less than one, with plastic media. Mr. Freemon also explains that production cost reductions combined with the time savings, and improved overall profitability allow the Depot to compete more effectively with other government agencies for contracts.

It is important to realize that chemical strippers are still used where plastic media is impractical. For instance, small parts with intricate detail still require the use of chemical stripping. However, Mr. Freemon notes that there are few, if any, disadvantages to plastic media blasting as currently used. In fact, plans are underway to increase its use wherever possible.

For more information regarding plastic media blasting equipment and its use contact the Technical Assistance/Support Unit at 919/733-2178.

Assessment of Existing Tank System Integrity

Deadline: January 12, 1988

Standards for hazardous waste storage and treatment tanks (July 14, 1986 Federal Register) requires that an assessment be done on existing tank systems without secondary containment to ensure that the tank system is acceptable for treating or storing a hazardous waste. The assessment should be performed by an independent registered engineer and include:

(a) a description of the tank (for example, size, age, and material of construction);

(b) results of the tank integrity test;

(c) factors affecting potential corrosion; and

(d) design measures to protect the tank from vehicular traffic, floods, and seismic phenomena.

A copy of this completed engineering assessment must be available on site for review at the time of the annual inspection.

Our field agents will also be inspecting tanks systems and their secondary containment for compliance.

(Notice that these new regulations now cover all tank systems regardless of their relation to the ground and the entire system or just the tank itself.)

Small generators who accumulate hazardous waste in quantities less than 6,000 kg or for less than 180 days (270 days if TSD's are located further than 200 miles away) do not fall under these new tank standards but need only comply with section 265.201. All other generators (greater than 1000 kg) and storers, interim status and permitted, fall under this regulation (40CFR 264 or 265 Subpart J) as of January 12, 1987.
"Mixed Waste" contains both low level radioactive material as defined by the Nuclear Regulatory Commission (NRC) and hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA).

At the present time, low level radioactive "mixed waste" is regulated by both the NRC and RCRA. In the future, state RCRA programs will be authorized by EPA to administer the proper disposal of this waste. North Carolina's regulation of this "mixed waste" through RCRA is anticipated in July, 1988.

To incinerate mixed waste, three permits are currently required: An Air Quality Permit from the Environmental Management Division of the Department of Natural Resources and Community Development (NRCD), a RCRA Incinerator Permit from the Solid Waste Management Section of the Department of Human Resources and an NRC Incinerator Permit from the Radiation Protection Section of the Department of Human Resources. When fully regulated by RCRA, only RCRA and Air Quality permits will be required.

Presently generators of less than 220 pounds of hazardous waste in any one month, (i.e., Conditionally Exempt Small Generators), are exempt from the permitting requirements of RCRA provided they have a Municipal or Solid Waste Permit [40 CFR 261.5(g)(3)(iv)]. Other permits may be required from NRC and NRCD.

Generators and Small Generators must obtain a permit to incinerate and abide by all incinerator requirements. Generators who store the mixed waste more than 90 days before burning must obtain a storage permit.

Any incinerator ash or residue which contain above background count of radioactivity must go to a NRC permitted landfill for low level radioactive waste. If a listed solvent on the RCRA "land ban" list (F001-F005) is incinerated, the Toxicity Characteristic Leaching Procedure (TCLP) test must be run to determine if the ash meets performance based standards for disposal in a RCRA hazardous waste landfill. If any RCRA waste (listed or characteristic) is incinerated, a chemical analysis must be run to show that it can be delisted. If delisted the resulting ash may be taken to a Solid Waste Landfill.

About 50% of the low level radioactive waste is generated by research institutions. Of this amount some is both a low level radioactive waste and a listed or characteristic hazardous waste. Scintillation liquids and vials represent such a case of "mixed waste." The NRC chose not to regulate these since it was determined that the level of radioactivity is so low as not to endanger human health or the environment, i.e., less than 0.05 micro-curies per gram of Hydrogen-3 (Tritium) or Carbon-14. If scintillation vials are emptied of the RCRA listed solvent, rinsed and crushed, acceptance at a permitted sanitary landfill may be possible if approval is obtained from The Solid Waste Management Section.

OOPS!!!

In our last newsletter we gave the wrong contact for the NCSU Small Generator Workshops. Linda Watkins of the Industrial Extension Service, (919) 737-3002, is handling information and registration for the Small Generator Workshops. Dora Shell and Pat Hillsgove in Lifelong Education are responsible for the 2-day RCRA Programs, the Chemical Spills Program and the NEW Waste Minimization Program.
QUESTIONS AND ANSWERS

By Judy Lund

Q. What does "on-site" mean?

A. "On-site" means the same or geographically contiguous property which may be divided by public or private right-of-way, as long as the entrance and exit are directly across from each other and access is by crossing, as opposed to going along, the right-of-way. Non-contiguous properties owned by the same person but connected by a right-of-way which he controls and to which the public does not have access, is also considered on-site property.

Q. If I have a used oil with a halogen content greater than 1000 ppm and I know it did not come from solvents being mixed, how do I rebut the presumption that it is a hazardous waste?

A. Analyze to determine if any F001, F002 solvent or Appendix VIII list compound is greater than 100 ppm. If less than, oil is either on-or off specification.

Q. If I am a small quantity generator only, do I have to file an annual report?

A. No, only large generators and TSD facilities must file annual reports. However, if you were listed on state records as being a large quantity generator for anytime during the year you must complete the annual report form for that period.

Q. Do Small Quantity Generators have to keep a hazardous waste container inspection log?

A. A small quantity generator is required to inspect areas where containers are stored at least weekly for leaks and deterioration. A log of inspections must be kept for at least three years from the date of the inspection.

Q. In satellite accumulation can I have two drums for different wastes at one work station?

A. Yes, as long as you do not exceed the quantity limitation at that work station which is 55 gallons for hazardous waste and 1 quart for actually hazardous waste. For example, two full 55 gallon drums of two different waste solvents at one work station would be in violation of the satellite accumulation rule. However, two containers, one 20 gallon container of waste trichloroethylene and one 20 gallon container of waste Freon, would be acceptable according to the satellite accumulation rule.
Q. Are there any restrictions on our selling or giving old batteries to a metal junk dealer?

A. No. When batteries are being reclaimed, the only people subject to regulation are the actual reclaimer (crack open to reclaim lead) of spent lead acid batteries. Generators, collectors and transporters of batteries that are going to be reclaimed are not subject to regulation. Batteries should be stored in a manner that prevents leakage of acid or hydrogen gas to the environment. However, it is a good idea to know that the people you sell or give the batteries to are reputable dealers. If you are going to dispose of your batteries, they are subject to the hazardous waste regulations, and should be managed as a characteristic hazardous waste due to the lead and acid content (D008,D002).

Q. Is used antifreeze a hazardous waste?

A. Used antifreeze may meet the definition of a characteristic hazardous waste due to heavy metal content, specifically lead. Uncontaminated antifreeze (ethylene glycol & water) is not a hazardous waste but should be disposed of in an environmentally safe manner (ex. sewer as long as permission is obtained from local POTW). Antifreeze should never be disposed in a storm drain or on the ground.

Q. If I own a distillation unit and recycle my own solvents on site, is the sludge generated from the unit a hazardous waste?

A. If the solvents being recycled are listed solvents (i.e., F001), then the sludge generated is a hazardous waste and must be disposed of at a permitted hazardous waste facility. If the solvents being recycled are characteristic solvents only (i.e., ignitable), then the sludge may or may not be a hazardous waste. Analysis should be made to determine the nature of the waste. The sludge should not be disposed in a sanitary landfill without a waste determination and prior approval from the solid waste branch.

Q. What are the phone numbers for the Solid Waste Management Section.

A. Section (919) 733-2178
Hazardous Waste Management Branch (919) 733-2178
Solid Waste Management Section (919) 733-0692
Superfund Branch (919) 733-2801