Ferrous Foundry Waste Minimization Options

James E. Vondracek

RMT Inc.

ABSTRACT

The foundry industry is a major recycler of waste materials (scrap metal). Unfortunately, the recycling of these materials can result in the generation of hazardous wastes. This article focuses on two potentially hazardous waste types in the ferrous foundry industry - calcium carbide desulfurization slag (potentially reactive) and melt emission control residuals (potentially EP toxic). An overview is given on how foundries have evaluated different waste management options. The ultimate goal is to minimize the amount and degree of hazardous wastes generated while reducing the cost of managing these wastes.

INTRODUCTION

Foundry Industry

Although there are differences from one foundry to the next, basic foundry processes vary little from one foundry to another. All foundry operations produce castings by pouring molten metal into molds, typically consisting of molding and core sands. Once the casting has cooled and hardened, it is separated from the mold and core materials in the shakeout process. The castings are cleaned, inspected, and then shipped for delivery. Figure 1 (A.T. Kearney Co., Feb. 1971) is a schematic of a typical foundry process.

Foundries are major recyclers of waste materials. Scrap iron and steel comprise 85 percent or more of the ten million tons of ferrous castings produced each year in the United States. Reclaimed copper, aluminum, lead, tin, zinc, and other metals are also extensively recycled in making nonferrous castings.
Foundry Process Solid Waste

Figure 2 shows a schematic materials balance for a ferrous foundry. Metal for melting and sand for core and mold materials are the major input materials, while product and waste materials make up the output. Most foundries employ internal recycling of core and mold materials; however, these materials eventually lose their basic characteristics, and portions of these materials no longer suitable for use are then disposed in a landfill. Sprue, risers, and reject castings are recycled internally to the melting operations, and many types of slags in ferrous foundries are reclaimed internally for their metal content. Nonferrous foundries often contract for recycling services because slags, dross, and grinding residues may contain metal of sufficient value to be extracted in smelters. The reclaimed metal is then returned to the foundry as an ingot.
FOUNDRY MATERIALS BALANCE

MAJOR MATERIALS IN

CORE AND MOLD MATERIALS:
- SAND
- BINDERS
- ADDITIVES

MELTING MATERIALS:
- METALLICS
- REFRACTORIES
- FUELS
- FLUXES

OTHER MATERIALS:
- GRINDING WHEELS
- SHOT
- ABRASIVES
- ETC.

INTERNAL PROCESS RECYCLING:
- METALLICS
- MOLDING SAND
- CORE SAND

MAJOR MATERIALS OUT

CASTINGS-PRODUCT SOLD

SOLID WASTE TO LANDFILL

USED CORE AND MOLDING SAND:
- SWEEPINGS,
- CORE BUTTS

MELTING WASTE:
- SLAG, REFRACTORIES
- FLUX, SCRUBBERS

DUST COLLECTOR:
- PARTICULATES,
- ABRASIVES,
- SHOT, ETC.

NON-SOLID WASTES:
- COMBUSTION GASES,
- WATER

FIGURE 2
Hazardous Waste

Some foundry processes have the potential to generate hazardous wastes within the plant. These processes include the following:

- **Ductile Iron Production/Melting** - To reduce the sulfur content of iron, some foundries use calcium carbide desulfurization in the production of ductile iron. The calcium carbide desulfurization slag generated by this process may exhibit the characteristic of reactivity.

- **Melting Emission Control** - Melt materials which contain significant amounts of certain heavy metals (such as lead, cadmium, and chromium) may result in wastes which are classified as hazardous due to EP Toxicity.

- **Molding** - Nonferrous alloy castings, such as brass and bronze, contain lead that may generate wastes which are classified as characteristic hazardous waste due to EP Toxicity.

- **Core-Making** - Some core-making processes use strongly acidic or basic substances for scrubbing the off-gases from the core-making process. Sludges from this scrubbing process may exhibit the characteristic of a corrosive waste.

Waste Management Options

The basic management options for minimizing both the amount and degree of hazardous waste associated with foundry waste are as follows:

- Alter product requirements.
- Change raw materials.
- Improve production process control.
- Recycle to the original manufacturing process.
- Recycle/beneficially reuse.
- Treatment

This paper will discuss how some foundries have evaluated the application of these waste management options for calcium carbide desulfurization slag and melt emission control residuals.

CALCIUM CARBIDE DESULFURIZATION SLAG

Process Description

In the production of ductile iron, it is often necessary to add a desulfurizing agent in the melt because the input (charge) materials contain excessive amounts of sulfur. One desulfurization agent commonly used is solid calcium carbide (CaC$_2$). Based on investigations by Talbala et al. (1976), calcium carbide is thought to decompose to calcium and graphite. The calcium then reacts with sulfur to form calcium sulfide (CaS). The calcium carbide desulfurization slag is generally removed from the molten iron in the ladle and placed into a hopper. For adequate sulfur removal, calcium carbide must be added in slight excess. Therefore, the slag contains both CaS and CaC$_2$. The calcium carbide desulfurization process is shown on Figure 3.
Waste Characteristics

One common practice is to treat the desulfurization slag with water (Stolzenburg, et al., 1985). This is done to generate and release acetylene gas from the unreacted calcium carbide. The other major reaction product is solid calcium hydroxide or lime.

This reaction is typically exothermic, releasing a considerable amount of heat, which is particularly evident when only small quantities of treatment water are used. Under these conditions, acetylene can ignite during the wetting and mixing of the slag. In addition, upward convection currents and steam generation resulting from treatment reactions may cause the release of considerable amounts of fugitive dust.

The calcium sulfide in the slag may release sulfide into solution in the treatment process water. This sulfide will remain in solution at high pH. However, in the neutral to acidic pH range, bisulfide is converted to hydrogen sulfide gas. During typical treatment operations, the alkaline nature of the calcium carbide desulfurization slag prevents the pH from dropping to a point where hydrogen sulfide gas is formed. However, the treatment water contains bisulfide, and therefore has the potential for releasing H₂S if the wastewater is neutralized in a settling pond or wastewater treatment plant before the sulfide has been adequately diluted.
Calcium carbide desulfurization slag has a distinctive odor. Since pure acetylene is odorless, the odor must be produced by other trace constituents in the off-gases. A calcium carbide desulfurization slag sample from one ductile foundry was treated with water at a 1:1 solid-to-liquid ratio, and the gas was collected in a Tedlar bag for analysis by GC-MS. Several trace gases were identified, including arsine, divinyl sulfide (CH$_2$=CH)$_2$S, ethanethiol (ethyl mercaptan), methane, phosphine, and carbon monoxide.

The sum of measured volumes of these gases represented less than 1 percent of the total gas volume generated. However, the solubility of these gases in the reaction water was not accounted for. Any one of these gases (except methane and carbon monoxide), or a combination of them, could contribute to the observed odor. Furthermore, the reaction of the slag with water may give rise to potential health hazards if workers are exposed to excessive concentrations of these gases.

Field measurements were conducted where desulfurization slag was being treated with water. Arsine and/or phosphine and carbon monoxide were detected with Draeger gas detection tubes; and divinyl sulfide was identified by GC-MS from a grab sample in a gas sampling bottle. It is difficult to differentiate between arsine and phosphine using Draeger tubes. Sampling and analysis of off-gases using NIOSH methods P & CAM 265 and 216 showed that these substances, if present, were below the detection limits of these methods.

All three gases are of particular concern for human health reasons. The TLV (8-hour average) for carbon monoxide is 5.5 mg/m^3, and the National Ambient Air Quality Standard (NAAQS) is 10 mg/m^3. No standard for divinyl sulfide has been established in the United States. However, in the Soviet Union, where toxicological research on laboratory animals indicates that divinyl sulfide is a central nervous system depressant (Trofimov and Amosova, 1984), a maximum allowable concentration (MAC) of 0.2 mg/m^3 has been recommended (Glukharev, et al., 1980).

Regulatory Framework

Solid wastes can be classified as hazardous under the federal Resource Conservation and Recovery Act (RCRA), as either "listed" or "characteristic" wastes. One of the characteristics of a hazardous waste, as defined under 40 CFR 261.23, is reactivity. Desulfurization slag may be considered hazardous by this definition. Specifically, the slag reacts with water to form acetylene gas which may give rise to explosive mixtures as defined in 40 CFR 261.23(3). Also, with a neutral to acidic pH value, the calcium carbide desulfurization slag may emit hydrogen sulfide gas, which may result in its definition as hazardous under 40 CFR 261.23(5). Other gases, which are potentially toxic at high concentrations, may also be generated during treatment of the slag potentially rendering it hazardous by 40 CFR 261.23 (4). For these reasons, analysis and treatment of this type of waste are of great concern to the ductile iron foundry industry.

Alter Product Requirements

The requirements for ductile iron have been developed with time and experience. The key property that differentiates grey iron from ductile iron is the sulfur content. There is a large body of information that relates the sulfur content of cast iron to the physical properties. Individual manufacturers have researched the properties needed for their products, and have established specifications for sulfur content and other related properties so that product requirements are met.
Often, the material specifications for products have been established not on the needs for the product but on what the state-of-the-art technology is capable of producing. When this happens, a particular technology is actually being prescribed. What some companies have found is that they need to revisit the needs of the product to determine whether, for example, the sulfur content they have specified is too restrictive. Some companies have found that the product requirements can be adjusted without sacrificing the utility or the durability of the product.

For example, if a higher sulfur content is acceptable, the foundry will not have to go to the far end of what the calcium carbide desulfurization treatment process will produce. Instead of having to add a 20 or 30 percent excess calcium carbide to the molten metal for complete desulfurization, a lower dose could be used, resulting in far less unspent calcium carbide in the waste; therefore, the wastes may not be classified as reactive hazardous waste.

This situation exists within the foundry industry. Not all ductile iron foundries that employ calcium carbide desulfurization generate reactive hazardous waste. Whether the differences are due to more or less stringent product requirements cannot be determined. The quality of the charge metal purchased and the design of the desulfurization process itself also affect waste characteristics. If large excesses of the calcium carbide reagent are not needed, and if the desulfurizing process equipment is efficient, the resulting calcium carbide desulfurization slag will be far less reactive, possibly nonreactive.

Change Raw Materials

The first option is to eliminate the generation of the reactive desulfurization slag by substituting calcium carbide with some other material. A few large foundry companies have made major advancements in new desulfurization technologies over the past years. One such process involves the use of a mixture of calcium oxide, calcium fluoride, and two other materials. One foundry reports that, not only is the product quality satisfactory, but the plant has eliminated the generation of a major problem hazardous waste, and the economics of the process are actually better than calcium carbide desulfurization.

A second option is to alter the charge metal by purchasing scrap that has low sulfur content in the first place. This method is commonly used by steel foundries, since the products they manufacture generally require a lower sulfur content. However, the purchase of high-grade, low-sulfur scrap may or may not work for production of high-quality ductile iron, and the supply of high-quality scrap varies; thus, the economics may favor other options.

Improve Production Process Control

Since unspent calcium carbide is what causes the slag to be classified as reactive, a logical method of eliminating the hazardous characteristic would be to control the process better in order to completely react the calcium carbide with the sulfur in the metal.

Two problems arise. First, the amount of sulfur in the scrap metal varies widely, so the metallurgist never knows exactly what dose is needed to just use up the calcium carbide. Second, there is some inherent inefficiency in contacting the sulfur with the calcium carbide, and some metallurgists contend that an overdose will always be necessary, even if one could predict stoichiometrically exactly how much calcium carbide was needed to reach a desired sulfur content.

68
Typically, when a foundry begins using calcium carbide for desulfurization, the level of unspent calcium carbide in the slag is very high. This level decreases with time and experience, but often not to a level low enough so the waste could be considered nonreactive. Recent innovations in process control for calcium carbide desulfurization include methods of introducing the material itself as well as forms of the material. The most common form of calcium carbide used is coarse granules. Some companies have experimented with very fine granules, coated granules, and solid rods made of calcium carbide in an effort to control the physics of the reaction more closely. Because there is no established USEPA test procedure for some of the reactivity criteria that come into play with this waste, it is hard to claim clear success; however, at least two calcium carbide manufacturers appear to have come up with important developments for this basic option.

Recycle to the Original Manufacturing Process

Often, calcium carbide desulfurization slag will contain from 10 percent to 50 percent metal. Because the slagging operations involve raking molten materials off a ladle of 3,000°F metal, it is common to find fairly high metal content in the slag. Several foundries have reclaimed this metal via sorting, while other foundries have experimented with recharging the entire mass of the slag back into the melting furnaces. When this is done, the calcium hydroxide is included in the melting furnace slag, and the unspent calcium carbide is either used or oxidized in the melting furnace. Little testing has been done to determine the actual fate of the sulfur. Most of it may be included in the slag, but it may also be emitted to the air as sulfur dioxide, or, for foundries with wet emission control systems, it may be dissolved in the water.

Foundries who have tested this method found that, with good control and metering of the recycle, the sulfur does not seem to concentrate in the metal products. Before going forward with this option, a foundry needs to know the environmental effects on all media for this recycling operation. It needs to know what additional contaminants are being placed into the air, the water, and the wastes from the process. But, given that those things are known and turn out favorable for the recycling, other major hurdles are the logistics of the recharge and regulatory constraints.

Recycle/Beneficially Reuse

Because the calcium carbide desulfurization slag contains lime, some foundries have determined that it can be useful in dealing with other problems they may have. Since some foundries generate melt emission control residuals (e.g., furnace dust) that are classified as EP Toxic due to lead and cadmium leaching, they have found that, by blending calcium carbide desulfurization slag with the melt emission control residuals in proper doses, the mixture is often non-EP-Toxic. Because the majority of this treatment effect is accomplished through the lime content of the slag, one must be concerned about overdosing, since raising the pH of the furnace dust too high (above about pH 11.0) will cause lead to leach out. (Lead leaches at both low and high pHs.) RMT has experimented with treatment substances that, when mixed with calcium carbide desulfurization slag, will cause melt emission control residuals to be rendered non-EP-Toxic, and will ensure that the treated waste does not cause problems when disposed in a non-acidic environment.
Treatment

We have seen that the state-of-the-art methods for spraying or immersing the desulfurization slag in water have the potential to cause difficult air emissions and industrial hygiene problems. Several foundry companies and research groups have evaluated three different basic types of reactors for treatment of calcium carbide desulfurization slag.

The first, a reactor system involving immersion of the slag in water, is really a more controlled version of the methods commonly used by foundries at this time. The British Cast Iron Research Association has done work on these types of reactors over the past 10 years, and has developed prototypes for systems to introduce the slag into the water.

Some groups experimenting with these types of processes have experienced problems with gas control and fires or explosions. Since the latent heat from the desulfurization slag is slow to dissipate, potentially explosive conditions can develop where the personnel operating the treatment systems simply do not wait long enough to pay close enough attention to the condition of the slag before introducing it to the treatment systems. The prototype systems that have been suggested and tried deal with quantities of desulfurization slag, usually less than 200 pounds per batch, and require trained and knowledgeable people to operate them. The foundry industry has generally shied away from water-based reactors for the desulfurization slag based on inherent problems with process control and dependency on personnel.

A second major type of reactor involves thermal destruction of the calcium carbide. At about 1,500°F, both calcium carbide and acetylene are thermally oxidized. Therefore, a system such as a rotary kiln could be used for thermal destruction of the reactivity characteristics. The additional benefit of thermal destruction is that it will also effectively deal with potential sulfide reactivity problems. Large chunks of metals often included in the desulfurization slag will tend to be a problem for many types of thermal units. Concern over air emissions and cost are other hurdles to the use of thermal systems for calcium carbide desulfurization slag.

Some efforts have been made to use the latent heat of the slag (the slag generally runs from 2,600 to 2,900°F when it is generated) by introducing a small flow of oxygen into the very hot slag. Little serious experimentation has been done for this method, since the system again involves a process that is different than what has been used in the past and would appear to be personnel dependent.

A third treatment method involves chemical reaction of the calcium carbide, the acetylene, the other potential off-gases, and the sulfide through use of strong oxidizing agents, such as potassium permanganate and hydrogen peroxide. These chemicals have been shown to be effective in reducing off-gases and in eliminating sulfide reactivity when introduced to the water that is used to treat the slag. However, the chemical doses for achieving all of those goals are very high, and full-scale systems would be very costly.

Some improvements that have been made to the methods normally used by foundries to treat reactive desulfurization slag include treatment of the waste in a tank rather than in a waste pile. The tanks, generally constructed with three vertical sides and a ramped floor on the fourth side, first involved placing the waste and spraying water into it. Later versions have involved deeper tanks with flat floors that will allow placing hoppers of slag in the bottom of the tanks and immersing them in water by a combination of spraying and flooding. Experiments have shown that, if the slag can be rapidly covered by water, as
little as one foot of water over the top of the slag will act as a scrubber; and many of the gases, including acetylene, arsine, and phosphine, will largely be dissolved in the water. When chemical oxidants such as potassium permanganate or hydrogen peroxide are added to the water, the air pollution control effectiveness seems to increase. However, the foundry must be concerned about dissolving large quantities of flammable and toxic gases as well as sulfides, since introducing this water to the plant's wastewater treatment system or to the sanitary sewer could cause the gases to be liberated again at some other point.

Also, there is serious question as to whether such a system would be capable of obtaining a RCRA Part B Permit to operate without formal air emission control systems. These open tank systems are designed to be crude but effective. When one begins to collect flammable and toxic gases over such open tanks and to allow access of fork lift trucks to deliver and retrieve hoppers of slag, the logic of the system falls apart very quickly and one returns to the reactor concept or other options.

SUMMARY OF OPTIONS

The best options for calcium carbide desulfurization slag management appear to lie in altering the raw materials, improving the process control, and recycling to the original manufacturing processes, assuming the product requirements cannot be modified enough to eliminate the generation of reactive desulfurization slag using calcium carbide. Several foundries and suppliers have made major advancements in each of these options, and the next two or three years will tell which of the options becomes most popular.

MELT EMISSION CONTROL RESIDUALS

Process Description

Producing iron castings requires the metal be melted so it can be poured into the cavity of the mold to produce the desired shape of the casting. Foundries which produce iron castings typically use one of three different processes to melt the iron: cupola, electric arc furnace, or an induction furnace.

Because of Clean Air Act (CAA) requirements, most foundries have been required to install air pollution control equipment over their melting operations to come into compliance with these regulations. Foundries typically use either a dry baghouse or some form of wet scrubber system (e.g., wet cap, venturi, etc.) to collect the particulates from the melting operation.

A typical materials flow diagram for a cupola melting operation is illustrated on Figure 4. As illustrated on this figure, materials input to the melting operation include scrap metal, fluxes, coke (source of fuel for the cupola), and refractory material. Wastes generated by the process include spent refractories, slag, bottom drop and sweepings (for cupola operations), and either baghouse dust or a wet sludge depending on the type of melting emission control system. Typical pouring temperatures for iron range from 2,040°F to 2,700°F.

Waste Characteristics

Of the waste generated by this process, the one that is often classified as hazardous (EP Toxic) is the melting emission control residuals. Whether or not the melting emission control residual is EP Toxic is largely a function of the incoming quality of the metal which is charged into the furnace and the efficiency of the melting emission control system. Numerous "tramp" metals or minor constituent metals contained in the scrap which is charged into the furnace
include copper, nickel, chromium, cadmium, molybdenum, tin, aluminum, and lead. The lower grades of scrap generally exhibit higher concentrations of the tramp metals. The grade of scrap used by a given foundry is largely dictated by the quality of the casting being produced. For example, foundries which are producing counterweights for heavy machinery tend to use a much lower grade scrap than those foundries which are producing high grade industrial cast iron valves.

The emission control residuals sometimes exceeded EP Toxicity hazardous waste limits for lead and cadmium because the melting point of grey iron is approximately 2,700°F, where the melting point for lead is only about 620°F. As the metal is melted, the lead and cadmium will tend to volatilize and be collected by either the baghouse or wet dust collection emission control system.

In a study (Boyle, et al., 1981) conducted by the American Foundrymen's Society (AFS) in conjunction with the University of Wisconsin and the USEPA, leaching tests were conducted on cupola emission control dusts and sludges from 21 different foundries. This study concluded that 9 out of the 21 foundries generated emission control residuals which would be considered as a hazardous waste on the basis of EP Toxicity for lead. Two other foundries generated emission control residuals which would be classified as hazardous on the basis of EP Toxicity for cadmium. Concentrations in the EP Toxicity Test for the 21 foundries ranged from less than 0.6 mg/l to 130 mg/l. The mean lead concentration for the EP Toxicity Test was 12.8 mg/l, and the median was 0.8 mg/l. The EP Toxicity criterion for lead is 5.0 mg/l. This type of variation in the characteristics of emission control sludge from different foundries is indicative of the variability of the incoming scrap lead content and of the variation in melting operations and emission control equipment.

Regulatory Framework

At this time, the USEPA has not "listed" melting emission control residuals from iron foundries as hazardous. It is unlikely that these wastes meet the characteristics of ignitability, corrosivity, or reactivity. However, some foundries clearly generate emission control residuals which meet the characteristic of EP Toxicity. Those wastes which are classified as a hazardous waste on the basis of the EP Toxicity criterion, must be managed according to the hazardous waste management regulations promulgated under the Resource Conservation and Recovery Act (RCRA).

Alter Product Requirements

A key point in reducing or altering product requirements for the purposes of minimizing the generation of EP-Toxic emission control residuals is that the chief source of contamination (lead and/or cadmium) is not required to produce grey iron. These materials are "tramp metals" that are present in the materials which are being recycled by the foundry industry to produce castings. In fact, elevated levels of lead in grey iron can cause negative structural effects on the cast iron. Therefore, while it would make sense to attempt to reduce or alter lead content product requirements, lead is not even required for casting production. Therefore, this management option has no application for melting emission control residuals.

Change Raw Materials

A predominant source of lead and cadmium in the emission control residuals from foundry melting operations is the scrap material itself. Materials such as coke and certain fluxes contain much lower quantities of trace metals than does the scrap.
The first step in altering raw materials to minimize the generation of hazardous wastes from emission control residuals, is to identify the incoming source or sources of lead and cadmium. Although the incoming scrap is generally the primary source of lead, each major incoming source should be evaluated on a preliminary basis to verify this assumption. The authors have found that even the soil that has adhered to the scrap coming from the scrap yard may be a source of lead.

Once the sources of lead and cadmium are identified, the next step is to make arrangements to acquire charge materials which contain lower concentrations of lead and cadmium. A charge modification program is then implemented using the new sources of raw materials. The melting emission control system should be purged of residual waste material before implementing the charge modification program. Carry-over from existing waste in the emission control system can mask the true results of the charge modification program unless the system has been purged.

Figures 5 and 6 illustrate a reduction in lead and cadmium concentrations from the EP Toxicity Test on melting emission control residuals collected during a two-week modification program at a ferrous foundry. On Figure 5, the lead concentration was reduced drastically over the first two or three days of the charge modification program. This is typical of charge modification programs which have been conducted. The reduction in cadmium concentration with time does not show the same drastic reduction experienced with lead (Figure 6). However, the charge modification program for this foundry was also successful in reducing cadmium levels to below the EP Toxicity hazardous waste criterion.

Altering raw materials has been shown to be a successful way to minimize the generation of hazardous melting emission control residuals in the ferrous foundry industry. While charge modification programs have been successful, they are generally not economical because most foundries cannot continue to melt the higher grade scrap and still remain competitive. Many foundries have conducted successful charge modification programs only to realize that the economics of the higher grade scrap preclude its continued use in the foundry; therefore, the charge modification program is abandoned. The second major problem is securing a continuing reliable source of high-grade scrap.

Improve Production Process Control

Hazardous melting emission control wastes are sometimes generated by the ferrous foundry industry because airborne particulates are required to be captured through air pollution control equipment. Some foundries have chosen to switch to induction melting furnaces to melt grey iron. One big advantage of the electric induction melting furnace is that air pollution control equipment is generally not necessary to control emissions, because the melting operation is less violent than cupola or electric arc melting. This assumes, however, that relatively clean materials (i.e., clean metal scrap) can be used in the melting process. Obviously, eliminating the need for collecting emissions over the melting operation eliminates the generation of potentially EP-Toxic air pollution control residuals. Changing the melting equipment can clearly eliminate the generation of hazardous waste.

Recycle to the Original Manufacturing Process

Recharging the melting emission control residuals is a common practice in the steel-making industry (Nagle, et al., 1983). This has been done in some cases to supplement alloy materials which are added to the melting operation. The practice of recharging foundry melting emission control residuals has been investigated by some foundries with varying success. Materials handling and
FOUNDARY CHARGE MODIFICATION
EP TOXICITY TEST RESULTS

LEAD CONCENTRATION (mg/l)

H.W. LIMIT

FIGURE 5
FOUNDORY CHARGE MODIFICATION
EP TOXICITY TEST RESULTS

H.W. LIMIT

CADMIUM CONCENTRATION (mg/l)

TIME (DAYS)

FIGURE 6
the metallurgy problems will determine the feasibility of such an alternative. In general, this method for hazardous waste minimization is generally not used by a majority of foundries.

Recycle/Beneficially Reuse

Another reuse alternative outside of the original process is to reclaim the lead and cadmium which have concentrated in the emission control residuals. The feasibility of this reclamation outside of the original production process largely depends on the concentration of metals within the residual, the cost of recovering the metals, and the market price for the metal. While recycling of these materials outside the original production process has been used in the nonferrous foundry industry (i.e., brass foundry), its application within grey iron foundries is extremely limited. Some foundries have also pursued marketing of the furnace dust as input to brick manufacturing and other consumer product applications, but consumer product liability concerns have limited this option.

Treatment

Various chemical means have been used to reduce the leaching potential of toxic metals. The four types of chemical treatment applicable to emission control residual waste which are EP Toxic for lead or cadmium include the following:

- Precipitation
- Absorption
- Chemical Reduction
- Solubility Control

This paper highlights two of the four chemical treatment methods which have been used quite extensively in the foundry industry.

Chemical Reduction

Chemical treatment using metallic iron added to hazardous wastes has proven effective. Figure 7 shows that, at a dosage of 5 percent (by weight) iron fillings, lead leaching from a cupola emission control sludge was reduced from 28.6 mg/l to less than 0.1 mg/l (Stephens et al., 1984). A dosage of 7.5 percent iron fillings did not significantly increase treatment effectiveness. Cadmium leaching was virtually unaffected by treatment at these dosages. The mechanism proposed to explain the observed decrease in lead leaching is a redox reaction whereby metallic iron reduces divalent lead to metallic lead.

Evidence for a redox mechanism is found in EP Toxicity Test results. The addition of iron filings resulted in a final pH in the EP Toxicity Test slightly higher than untreated samples, indicating that the hydrogen ion may have been neutralized by chemical reduction.

Some success has been achieved using metallic iron to treat wastewater directly. An advantage of using metallic iron instead of iron hydroxide is that less sludge volume is generated. The presence of oxidizing agents in the wastewater can limit the effectiveness of metallic iron treatment.

Solubility Control

Another method of chemical treatment involves controlling the pH of the waste solution so metals will not be soluble when exposed to acidic conditions. Since
FIGURE 7: LEAD AND CADMIUM LEACHATE CONCENTRATIONS FROM CUPOLA EMISSION
CONTROL SLUDGE TREATED WITH METALLIC IRON

FIGURE 8: LEAD LEACHATE CONCENTRATIONS FROM BRASS FOUNDRY SOLID WASTE
TREATED WITH LIME OR MAGNESIUM HYDROXIDE.
the solubility of many metals, including lead and cadmium, is pH dependent, waste classified as EP Toxic can sometimes be rendered nonhazardous by adding a material that will maintain a neutral or slightly alkaline pH leaching condition.

One of the simplest and most cost-effective additives for this purpose is slaked lime \((\text{Ca(OH)}_2)\). It is well-known that lime is effective in precipitating lead and cadmium as insoluble hydroxides. Excess dosages of lime can result in pH values high enough to redissolve lead. The addition of 15 percent by weight lime to brass foundry solid waste reduced lead leaching from 22 mg/l to <0.1 mg/l (final pH in EP Toxicity Test of 7.8). However, when a water leaching test with no acid added was used, the pH was 11.6, and lead leached at 7.2 mg/l (Figure 8). This can pose a limitation to the use of lime because most "natural" leaching at disposal sites for treated foundry wastes is likely to be under leaching conditions with close to neutral pH.

Because of the problem of dissolving lead at higher pH values, magnesium hydroxide \((\text{Mg(OH)}_2)\) is a more desirable material for pH control than lime (Turpin, et al., 1985). Magnesium hydroxide is buffered at a maximum pH of approximately 10.5; therefore, the potential for dissolving lead at higher pH's is minimal even if an excess of \(\text{Mg(OH)}_2\) is added. Adding 10 percent \(\text{Mg(OH)}_2\) by weight as a 55 percent slurry to the same brass solid waste reduced lead leaching to 0.3 mg/l (final pH of 8.5 in EP Toxicity Test). Less than 0.1 mg/l of lead leached in the water leach test (Figure 8).

Magnesium hydroxide slurry has been tested on wastewaters from three foundry cupola emission control systems. Doses ranging from 0.3 to 1.1 grams of \(\text{Mg(OH)}_2\) per gram of suspended solids resulted in a reduction in lead leaching from the resulting sludge to well below the hazardous waste limits (Figure 9). Reduction of cadmium leaching is dependent on the final pH of the leaching medium in the EP Toxicity Test. Data for the \(\text{Mg(OH)}_2\) treatment tests indicate that a final pH of eight or more is required for significant reduction in cadmium leaching (Figure 10).

Although magnesium hydroxide is more expensive than lime, it is preferable to lime because it has the benefit of easier pH control, thereby reducing process control requirements. The results of testing show that, while in many cases adding lime or magnesium hydroxide is effective in rendering a hazardous waste nonhazardous, knowledge of the leaching characteristics of the waste material and the treated waste mixture is important to ensure effective treatment and proper disposal. Also, while pH control of solubility appears to be an effective treatment method in the short-term, long-term characteristics of the chemical additive should be evaluated to ensure that the waste will remain nonhazardous over time.

SUMMARY OF OPTIONS

In concept, the best waste minimization options for ferrous foundry melting/emission control residual management appears to be altering the raw materials (i.e., charge modification) or the use of electric induction melting without air pollution control equipment. When these options are not feasible from an economic standpoint, the only remaining option, other than hazardous waste disposal, is to treat the waste using an appropriate form of chemical treatment. The authors have found that developing waste minimization options for melting emission control residuals must be done on a case-by-case basis because of the variability of materials as well as melting operations, air pollution control equipment, and product requirements.
FIGURE 9. LEAD LEACHATE CONCENTRATIONS FROM CUPOLA EMISSION CONTROL SLUDGE FROM WASTEWATER TREATED WITH MAGNESIUM HYDROXIDE

AVERAGE INITIAL LEAD VALUE = 210mg/l

LEAD H.W. LIMIT

DOSAGE (gm Mg(OH)$_2$/gm S.S)
FIGURE 10: Cadmium leachate concentrations vs. final pH in EP Toxicity tests on cupula emission control sludge from wastewater treated with magnesium hydroxide.
REFERENCES

