SUPPLEMENTARY MATERIAL

Pesticides And Parkinson’s Disease – Is There A Link?

Authors:
Terry P Brown,¹ Paul C Rumsby,² Alexander C Capleton,¹ Lesley Rushton,¹ Leonard S Levy¹

Institution where work was performed:
MRC Institute for Environment and Health, University of Leicester, 94 Regent Road,
Leicester, LE1 7DD, United Kingdom

Affiliations:
¹MRC Institute for Environment and Health, University of Leicester, 94 Regent Road,
Leicester, LE1 7DD, United Kingdom

²National Centre for Environmental Toxicology, WRc-NSF Ltd, Henley Road, Medmenham,
Marlow, SL7 2HD, United Kingdom

Corresponding author: Alexander C Capleton
MRC Institute for Environment and Health
University of Leicester
94 Regent Road
Leicester
LE1 7DD
United Kingdom

Phone: +44 (0) 116 223 1606
Fax: +44 (0) 116 223 1601
E-mail: acc8@leicester.ac.uk
Running title: Pesticides and Parkinson’s disease

Keywords: Pesticides, Parkinson’s disease, literature review, toxicology, epidemiology

Abbreviations:

2,4-D 2,4-Dichlorophenoxyacetic acid

GABA γ-Aminobutyric acid

H$_2$O$_2$ Hydrogen peroxide

NMDA N-Methyl-D-aspartate

NO Nitric oxide

PD Parkinson’s disease

ROS Reactive oxygen species
Epidemiological evidence

Case reports and case series

Twelve cases have been reported of acute exposure to pesticides giving rise to symptoms similar to those experienced in Parkinson’s disease (PD), after attempted suicide, occupational pesticide exposure in farming and house fumigation (Arima et al. 2003; Bhatt et al. 1999; Bocchetta and Corsini 1986; Lazzarino De Lorenzo 2000; Müller-Vahl et al. 1999; Sechi et al. 1992; Shahar and Andrews 2001; Stefano et al. 1989). Nine of the cases involved organophosphate pesticides, eight of which recovered with treatment (three with an anti-parkinsonism drug) and/or removal from the apparent exposure. The remaining three cases involved exposure to other pesticides over longer time periods, one of which recovered following removal from the exposure source. Two studies also describe three young cases (about 30 years of age) showing parkinsonism who had chronic exposure to the fungicide maneb, two of whom responded to treatment (Ferraz et al. 1988; Meco et al. 1994).

One case series study was identified that examined the life histories of a group of 21 young onset PD patients (Rajput et al. 1986; Rajput et al. 1987). The study found no association with young onset PD and the use of paraquat or other herbicides in agriculture, although this is consistent with current thinking that young onset PD is a primarily genetic disease (Tanner 2003).

Incidence, prevalence and mortality studies

Parkinson’s disease was found to be significantly associated with the geographical distribution of pesticide usage in agriculture in one of the three prevalence studies (Barbeau et al. 1987) and in all the three mortality studies (Ritz and Yu 2000; Strickland et al. 1996; Vanacore et al. 1991). In a second prevalence study an increased risk of parkinsonism was
observed with the general use of pesticides, but not for specific pesticides (Engel et al. 2001a). In the other prevalence study and the only incidence study looking at pesticide exposure no association was found with hexachlorobenzene exposure and the chronology of major herbicide and pesticide usage, respectively (Bennett et al. 1988; Sala et al. 1999). However, other risk factors have also been associated with PD including farming as an occupation (Goldsmith et al. 1990; Goldsmith et al. 1997; Granieri et al. 1991; La Bella et al. 1990; Lee et al. 2002; Rybicki et al. 1993; Schulte et al. 1996; Wang et al. 1994a), and rural living (Ben-Shlomo et al. 1993; Bennett et al. 1988; Errea et al. 1999; Imaizumi 1995; Svenson et al. 1993; Tandberg et al. 1995), although there are some conflicting findings regarding the association with rural living (Ferraz et al. 1996; Kuopio et al. 1999b; Rybicki et al. 1993; Sethi et al. 1989; Taba and Asser 2002).

Cohort studies

Four of the five cohort studies reviewed identified farming or agriculture as an occupation (which was considered a proxy for pesticide exposure) as a significant risk factor for PD (Baldi et al. 2003; Petrovitch et al. 2002; Tüchsen and Jensen 2000; Vanacore et al. 2002). Standardised hospitalisation rates (Tüchsen et al. 2000), incidence and relative risk rates (Baldi et al. 2003; Petrovitch et al. 2002) for PD were all increased for agricultural workers. The relative risk was shown to increase with number of years of plantation work and of self-reported pesticide use (Petrovitch et al. 2002) and also with the cumulative occupational exposure to pesticides (Baldi et al. 2003). One study identified a significantly lower prevalence of PD amongst farmers compared with non-farm workers (Yesalis III et al. 1985). However, these studies should be treated with caution as other occupational groups were also identified at an increased risk of PD (Tüchsen et al. 2000), and none were designed to investigate PD risk specifically. Indeed, only one study (Vanacore et al. 2002) assembled
their cohort from a population of licensed pesticide applicators and none of the studies had an independent measure of pesticide exposure (rather, all the studies used occupation as an exposure variable). Apart from one Danish study (Tüchsen et al. 2000), the numbers of PD cases identified in each study were small (up to 116), limiting their power to detect an association. In addition the criteria used to define cases were not given, and in two studies (Baldi et al. 2003; Yesalis III et al. 1985) health status was self-reported and not clinically confirmed.
Toxicological evidence

Potential cellular mechanisms in the development of Parkinson’s disease

A number of potential mechanisms involved in the death of dopaminergic neurons in the substantia nigra have been proposed, an understanding of which is important when evaluating the potential role of pesticides in PD development. Discussed in more detail below are the potential mechanisms outlined in Figure 3.

Inhibition of Complex I of the mitochondrial electron transport chain has been strongly implicated in the pathogenesis of PD. The potential involvement of Complex I inhibition was first identified when it was found that 1-methyl-4-phenylpyridine, the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, accumulates in the mitochondria of dopaminergic neurons and exerts its toxicity by inhibition of Complex I of the mitochondrial electron transport chain (Foley and Riederer 2000; Greenamyre et al. 1999; Greenamyre et al. 2001; Nicklas et al. 1992; Sherer et al. 2002). Additionally, a decrease of about 30% in Complex I activity in the substantia nigra, striatum, skeletal muscle and platelets has been noted in idiopathic PD patients without detectable structural or mitochondrial DNA changes (Foley and Riederer 2000), further suggesting a role for Complex I in PD pathogenesis.

The mechanisms by which Complex I inhibition may lead to the neurodegeneration seen in PD are yet to be fully determined. However, there is evidence that oxidative stress may have a role in PD pathogenesis, for example, brains from PD patients have been found to have elevated markers of oxidative damage (Sherer et al. 2002). The source of this oxidative stress is believed to result from the inhibition of Complex I, which leads to an increased production of reactive oxygen species (ROS). This could then result in a feed-forward cycle whereby the ROS further damage Complex I, further increasing ROS production and hence Complex I damage (Sherer et al. 2002). Reactive oxygen species (in the form of H$_2$O$_2$) are also produced...
during the auto-oxidation of dopamine and during the synthesis and metabolism of dopamine by tyrosine hydroxylase and monoamine oxidase, respectively (Foley and Riederer 2000). Normally, H$_2$O$_2$ is removed by glutathione, but glutathione is present at levels lower than elsewhere in the brain and has found to be further reduced amongst PD patients. As a result, this leads to higher than normal levels of H$_2$O$_2$ in the neurons, which decompose to hydroxyl radicals via the iron mediated Fenton reaction (Bharath et al. 2002; Foley and Riederer 2000). This would require iron in the free ferrous form, which is present at high levels in the substantia nigra and has been found to be higher in PD patients compared with age matched controls (Bharath et al. 2002). Overall, this suggests an important role for oxidative stress in the development of PD.

Complex I dysfunction may also result in neurons being vulnerable to excitotoxic insults by altering adenosine triphosphate levels, by impaired calcium homeostasis or both (Sherer et al. 2002). Glutamate is the predominant excitatory neurotransmitter in the brain. It does, however, have excitotoxic properties under some conditions (Greenamyre et al. 1999). The impaired mitochondrial Complex I activity associated with PD may predispose neurons to excitotoxic cell death by removal of the Mg$^{2+}$ blockade of the N-methyl-D-aspartate (NMDA) glutamate receptor. This blockade normally acts to prevent the excitotoxic stimulation of glutamate caused by an abnormal cellular influx of calcium. Without the blockade even normal cellular levels of glutamate may cause excitotoxic activation of the NMDA receptors and lead to a potentially fatal increase in intracellular calcium concentration (Sherer et al. 2002). The sequestration of calcium in the mitochondria, which may normally mitigate this effect, is decreased when electron transport is impaired (Greenamyre et al. 1999).

Nitric oxide (NO) has also been suggested as contributing to nigrostriatal injury. Inducible NO synthase is known to be increased in the substantia nigra in PD and increased NO could
also elevate local oxidative stress. Although NO is an effective free radical scavenger, it can react with the superoxide radical to form the peroxynitrite anion, a potent oxidative radical. NO also directly inhibits mitochondrial respiration (mainly at the level of Complex IV, but also at Complex I; Foley and Riederer 2000), thus adding to the oxidative stress.

Finally, three different components of Lewy bodies, wild-type human α-synuclein, parkin and ubiquitin carboxyterminal hydrolase, have been associated with genetic mutations in familial PD, which points to the possibility that altered protein conformation and/or degradation could be a key and common factor in sporadic PD. Transgenic mouse models in which α-synuclein is overexpressed show features of PD, including loss of dopaminergic nigrostriatal neurons and motor impairment (Betarbet et al. 2002a; Di Monte et al. 2002). Mice containing a doubly mutated human α-synuclein gene also showed an age-related decline in motor coordination and adverse effects on the integrity of dopamine terminals (Richfield et al. 2002).

Other pesticides

While there is evidence for neurotoxic effects of some other pesticides, all the mechanistic systems seen in PD are not consistently effected. A review of these other pesticides is presented below.

While the main neurotoxic effect of lindane is the inhibition of GABA_A receptors (Rivera et al. 1998), other neurotransmitter levels were increased including dopaminergic neurons in the substantia nigra (Artigas et al. 1988). It is not clear whether the observed changes in other neurotransmitter pathways are due to the release of the inhibitory action of GABA.

When administered to mice the organophosphate chloryrifos resulted in a small decrease in striatal dopamine uptake, a decrease in mitochondrial function, an increase in dopamine...
turnover and a decrease in open field behaviour (Karen et al. 2001). Although the organophosphate dichlorvos is a directly acting inhibitor of acetylcholinesterase, marked changes to the dopaminergic neurotransmitter system, including decreased dopamine binding and increased activity of tyrosine hydroxylase and dopamine-β-hydroxylase, are also seen (Choudhary et al. 2002). The authors suggested that alterations in the dopamine system may be a causative mechanism behind the behavioural and functional changes associated with delayed organophosphate neurotoxicity.

At high doses carbaryl has been shown to induce tremor, which can be reduced by prior treatment with L-dopa (Rigon et al. 1994). Carbaryl potentiated the catalepsy induced by the striatal dopaminergic receptor blocker, haloperidol. This led the authors to suggest that the effects of carbaryl involved a disturbance of the balance between cholinergic and dopaminergic systems.

Injection of 2,4-dichlorophenoxyacetic acid (2,4-D) into one striatum of a rat produced a marked depression in locomotor activity and circling behaviour and an increase in dopamine metabolism (Bortolozzi et al. 2001) indicated neurotoxicity in the basal ganglia. In pregnant rats treated with a 1:1 mixture of 2,4-D and 2,4,5-trichlorophenoxyacetic acid there was delayed ontogeny of brain dopamine (but not noradrenaline), together with a delay in the development of certain neurobehaviour in pups (Mohammad and St Omer 1985).

A heightened locomotor and stereotype response was observed in rats receiving the antifungal agent, triadimefon, at very high doses (Hill et al. 2000), primarily through the potentiation of dopamine activity. There was an increase in dopamine uptake and release in the striatum and nucleus accumbens.
References

Mohammad FK, St Omer VEV. 1985. Developing rat brain monoamine levels following in utero exposure to a mixture of 2,4-dichlorophenoxyacetic and 2,4,5-trichlorophenoxyacetic acids. Toxicol Letts 29:215-223.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cases Source</th>
<th>Definition</th>
<th>Number</th>
<th>Age (years)</th>
<th>Controls Source</th>
<th>Definition</th>
<th>Number</th>
<th>Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho et al. (1989), Hong Kong</td>
<td>Geriatric day hospital and old peoples home</td>
<td>Cardinal signs*, exclusion criteria applied</td>
<td>35</td>
<td>Range: 65–87</td>
<td>As cases</td>
<td>No disease specified</td>
<td>105</td>
<td>Age, sex and source of case</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanner et al. (1989), China</td>
<td>Neurology clinic</td>
<td>≥ 2 Cardinal signs, exclusion criteria applied</td>
<td>100</td>
<td>Mean: 57.2</td>
<td>As cases</td>
<td>Non-PD diagnosis</td>
<td>200</td>
<td>Age and sex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Range: 31–77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golbe et al. (1990), USA</td>
<td>Movement disorder clinic</td>
<td>Not reported, but exclusion criteria were applied</td>
<td>106</td>
<td>Not reported</td>
<td>Cases</td>
<td>Spouse</td>
<td>106</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hertzman et al. (1990), Canada</td>
<td>Physician lists</td>
<td>Generally accepted criteria</td>
<td>57</td>
<td>Range: 50–79</td>
<td>Regional electoral roll</td>
<td>None</td>
<td>122</td>
<td>Age and sex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koller et al. (1990), USA</td>
<td>Movement disorder clinic</td>
<td>≥ 2 Cardinal signs, exclusion criteria applied</td>
<td>150</td>
<td>Mean: 66</td>
<td>Neurology and medical clinics</td>
<td>Excluded if signs of Parkinsonism, exposure to neuroleptics, or severe dementia</td>
<td>150</td>
<td>Age and sex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zayed et al. (1990), Canada</td>
<td>GPs and neurology consultants</td>
<td>≥ 3 Cardinal signs, exclusion criteria</td>
<td>42</td>
<td>Mean: 57.8, SD: 11.1</td>
<td>Telephone directory</td>
<td>PD excluded</td>
<td>84</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Study</td>
<td>Location and Setting</td>
<td>Mean Age:</td>
<td>Age and Sex Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stern et al. (1991), USA</td>
<td>Neurology clinic</td>
<td>Mean: 68.4</td>
<td>Not reported, but exclusion criteria were applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wechsler et al. (1991), USA</td>
<td>Neurology clinic and PD support groups</td>
<td>Mean: 68.4</td>
<td>Not reported, but exclusion criteria were applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong et al. (1991), USA</td>
<td>Hospital PD centre</td>
<td>Mean: 68.4</td>
<td>≥ 2 Cardinal signs, exclusion criteria applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falope et al. (1992), Nigeria & USA</td>
<td>Neurology clinic</td>
<td>Mean: 65.9</td>
<td>≥ 3 Cardinal signs, exclusion criteria applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jiménez-Jiménez et al. (1992), Spain</td>
<td>Movement disorder clinic</td>
<td>Mean: 66.8</td>
<td>Hospital, SD: 9.1, emergency room ailments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semchuk et al. (1992), Canada</td>
<td>Hospital case register</td>
<td>Mean: 68.5</td>
<td>≥ 2 Cardinal signs, SD: 11.5, Community, Non-parkinsonism and no dementia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butterfield et al. (1993), USA</td>
<td>YOPD support groups</td>
<td>Mean: 69</td>
<td>≥ 2 Cardinal signs, exclusion criteria applied, All <50, Diagnosed with rheumatoid arthritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubble et al. (1993), USA</td>
<td>Rural: PD outreach clinic</td>
<td>Mean: 69</td>
<td>≥ 2 Cardinal signs, exclusion criteria applied, Signs of PD or other neurodegenerative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- YOPD: Young Onset Parkinson's Disease
- OOPD: Old Onset Parkinson's Disease
- PD: Parkinson's Disease
- Non-PD: Non-Parkinson's Disease
- Age and sex: Age and sex were matched for year of birth and diagnosis
- Frequency matched: Matched for age, sex, year of birth, and diagnosis
<table>
<thead>
<tr>
<th>Study Authors, Year</th>
<th>Population/Setting</th>
<th>Exclusion Criteria</th>
<th>Sample Size</th>
<th>Age, Sex Qualification</th>
<th>Disease Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hertzman et al. (1994), Canada</td>
<td>Urban: PD clinic and PD support groups</td>
<td>GPs and hospital records: ≥ 2 Cardinal signs, exclusion criteria applied</td>
<td>127</td>
<td>Mean: 70.5</td>
<td>Hospital records: Healthy subjects and community cardiac disease patients</td>
</tr>
<tr>
<td>Morano et al. (1994), Spain</td>
<td>Neurology clinic</td>
<td>Hoehn and Yahr staging criteria</td>
<td>74</td>
<td>Mean: 65.4</td>
<td>Accident and Emergency, and Non-neurological and functional CNS pathology</td>
</tr>
<tr>
<td>Chaturvedi et al. (1995), Canada</td>
<td>Cohort of Canadians</td>
<td>Not reported</td>
<td>87</td>
<td>≥ 65</td>
<td>As cases</td>
</tr>
<tr>
<td>Seidler et al. (1996), Germany</td>
<td>Neurology clinics</td>
<td>UK PD Brain Bank criteria</td>
<td>380</td>
<td>Mean: 52.5</td>
<td>Random addresses: Non PD</td>
</tr>
<tr>
<td>Liou et al. (1997), Taiwan</td>
<td>Movement disorder clinic</td>
<td>≥ 2 Cardinal signs</td>
<td>120</td>
<td>Mean: 58.3</td>
<td>Outpatient clinics: Non-PD diagnoses, previous brain disease excluded</td>
</tr>
<tr>
<td>Chan et al. (1998), Hong Kong</td>
<td>Neurology outpatients clinic</td>
<td>≥2 Cardinal signs, plus others and family history</td>
<td>215</td>
<td><60–80+</td>
<td>Hospital: No disease reported</td>
</tr>
<tr>
<td>Gorell et al. (1998), USA</td>
<td>Health care provider</td>
<td>Not reported, but exclusion criteria</td>
<td>144</td>
<td>>50</td>
<td>As cases: No disease</td>
</tr>
</tbody>
</table>

- **Urban: PD clinic and PD support groups**: Urban neurology and case contacts
- **Canada**:Records and hospital records applied
- **Spain**:Neurology clinic
- **Hoehn and Yahr staging criteria**:Mean: 65.4 SD: 1.1
- **Germany**:Neurology clinics
- **Taiwan**:Movement disorder clinic
- **Hong Kong**:Neurology outpatients clinic
- **USA**:Health care provider
- **Canada**:Records and hospital records applied
- **Spain**:Neurology clinic
- **Hoehn and Yahr staging criteria**:Mean: 65.4 SD: 1.1
- **Germany**:Neurology clinics
- **Taiwan**:Movement disorder clinic
- **Hong Kong**:Neurology outpatients clinic
- **USA**:Health care provider
- **Canada**:Records and hospital records applied
- **Spain**:Neurology clinic
- **Hoehn and Yahr staging criteria**:Mean: 65.4 SD: 1.1
- **Germany**:Neurology clinics
- **Taiwan**:Movement disorder clinic
- **Hong Kong**:Neurology outpatients clinic
- **USA**:Health care provider
<table>
<thead>
<tr>
<th>Study</th>
<th>Population Details</th>
<th>Number of Participants</th>
<th>Mean Age</th>
<th>Disease Status</th>
<th>Age and Sex Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCann et al. (1998), Australia</td>
<td>Hospital, residential care home and community groups</td>
<td>224</td>
<td>70.3</td>
<td>As cases</td>
<td>No disease</td>
</tr>
<tr>
<td>Menegon et al. (1998), Australia</td>
<td>Community groups, hospital wards and outpatient clinics</td>
<td>95</td>
<td>72</td>
<td>As cases</td>
<td>Healthy</td>
</tr>
<tr>
<td>Smargiassi et al. (1998), Italy</td>
<td>Hospital outpatients</td>
<td>86</td>
<td>66.4</td>
<td>As cases</td>
<td>Cardiology, nephrology, ophthalmology, and dermatology patients</td>
</tr>
<tr>
<td>Fall et al. (1999), Sweden</td>
<td>GP lists and prescription records</td>
<td>113</td>
<td>62.9</td>
<td>Regional</td>
<td>No disease</td>
</tr>
<tr>
<td>Kuopio et al. (1999a), Finland</td>
<td>Community</td>
<td>123</td>
<td>68.7</td>
<td>Population register</td>
<td>Healthy</td>
</tr>
<tr>
<td>Taylor et al. (1999), USA</td>
<td>Movement disorder clinic</td>
<td>140</td>
<td>Range: 31–88</td>
<td>In-laws and friends</td>
<td>Healthy</td>
</tr>
<tr>
<td>Werneck and Alvarenga, USA</td>
<td>Neurology clinic</td>
<td>92</td>
<td>70.6</td>
<td>Neurology clinic</td>
<td>Non-parkinsonism</td>
</tr>
</tbody>
</table>

Note: SD = Standard Deviation
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Source</th>
<th>Criteria</th>
<th>Cases</th>
<th>Controls</th>
<th>Matched by</th>
<th>n</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson et al. (2000), USA</td>
<td>Brazil</td>
<td>Medical care program</td>
<td>Not reported</td>
<td>496</td>
<td>Not reported</td>
<td>As cases</td>
<td>Healthy</td>
<td>541</td>
</tr>
<tr>
<td>Preux et al. (2000), France</td>
<td>Inpatient and outpatients</td>
<td>UK PD Society criteria</td>
<td>Mean: 71.1, SD: 7.5</td>
<td>140</td>
<td>As cases</td>
<td>Ophthalmology, ENT, endocrinology and rheumatology patients</td>
<td>280</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Behari et al. (2001), India</td>
<td>Movement disorder clinic</td>
<td>≥ 2 Cardinal signs, progression, and responsive to L-dopa</td>
<td>Mean: 56.8, SD: 11.1</td>
<td>377</td>
<td>Neurology clinic</td>
<td>Non-parkinsonism</td>
<td>377</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Herishanu et al. (2001), Israel</td>
<td>Neurology clinic</td>
<td>≥ 2 Cardinal signs, progression, and responsive to L-dopa</td>
<td>Not reported</td>
<td>93</td>
<td>Hospital neurology dermatology, internal medicine, and outpatient clinics</td>
<td>Non-PD diagnosis, those with extrapyramidal signs or neurodegenerative disease excluded</td>
<td>93</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Kamel et al. (2001), USA</td>
<td>Cohort of licensed pesticide applicators</td>
<td>Self-reported PD</td>
<td>Not reported</td>
<td>55</td>
<td>As cases</td>
<td>Non-PD</td>
<td>22 286</td>
<td>Not reported</td>
</tr>
<tr>
<td>Kirkey et al. (2001), USA</td>
<td>Health care provider</td>
<td>Not reported</td>
<td>>50</td>
<td>144</td>
<td>As cases</td>
<td>Disease free</td>
<td>464</td>
<td>Frequency matched for age and sex</td>
</tr>
<tr>
<td>Vidal et al. (2002), France</td>
<td>Insurance service</td>
<td>Neurologist</td>
<td>Not reported</td>
<td>227</td>
<td>As cases</td>
<td>PD free</td>
<td>562</td>
<td>Age, sex and</td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Setting</td>
<td>≥2 Cardinal signs, movement disorder and clinical progression, exclusion criteria applied</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>Source of Case</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Zorzon et al. (2002), Italy</td>
<td>PD Centre and movement disorder clinic</td>
<td>≥2 Cardinal signs, asymmetry and clinical progression, exclusion criteria</td>
<td>136</td>
<td>70</td>
<td>9.2</td>
<td>Neurology clinic</td>
<td>Non-parkinsonism</td>
<td>272</td>
</tr>
<tr>
<td>Duzcan et al. (2003), Turkey</td>
<td>Village</td>
<td>≥2 Cardinal signs or advice of relatives of deceased</td>
<td>36</td>
<td>>50</td>
<td></td>
<td>As cases</td>
<td>Non-neurological</td>
<td>108</td>
</tr>
<tr>
<td>Firestone et al. (2005), USA</td>
<td>Health care provider</td>
<td>≥2 Cardinal signs, one of which had to be bradykinesia or resting tremor</td>
<td>250</td>
<td>Range 37–88</td>
<td>As cases</td>
<td>Non-neurological</td>
<td>388</td>
<td>Age, sex and source of case</td>
</tr>
</tbody>
</table>

Abbreviations: CNS, central nervous system; ENT, ear, nose and throat; GP, General Practitioner; OOPD, old onset Parkinson’s disease; PD, Parkinson’s disease; SD, Standard deviation; YOPD, young onset Parkinson’s disease

*aCardinal signs: tremor, rigidity, bradykinesia, postural instability. *bReported as conference abstracts.